ﻻ يوجد ملخص باللغة العربية
Planning locomotion trajectories for legged microrobots is challenging because of their complex morphology, high frequency passive dynamics, and discontinuous contact interactions with their environment. Consequently, such research is often driven by time-consuming experimental methods. As an alternative, we present a framework for systematically modeling, planning, and controlling legged microrobots. We develop a three-dimensional dynamic model of a 1.5 gram quadrupedal microrobot with complexity (e.g., number of degrees of freedom) similar to larger-scale legged robots. We then adapt a recently developed variational contact-implicit trajectory optimization method to generate feasible whole-body locomotion plans for this microrobot, and we demonstrate that these plans can be tracked with simple joint-space controllers. We plan and execute periodic gaits at multiple stride frequencies and on various surfaces. These gaits achieve high per-cycle velocities, including a maximum of 10.87 mm/cycle, which is 15% faster than previously measured velocities for this microrobot. Furthermore, we plan and execute a vertical jump of 9.96 mm, which is 78% of the microrobots center-of-mass height. To the best of our knowledge, this is the first end-to-end demonstration of planning and tracking whole-body dynamic locomotion on a millimeter-scale legged microrobot.
Deep reinforcement learning (RL) uses model-free techniques to optimize task-specific control policies. Despite having emerged as a promising approach for complex problems, RL is still hard to use reliably for real-world applications. Apart from chal
This paper presents a novel contact-implicit trajectory optimization method using an analytically solvable contact model to enable planning of interactions with hard, soft, and slippery environments. Specifically, we propose a novel contact model tha
Understanding the gap between simulation and reality is critical for reinforcement learning with legged robots, which are largely trained in simulation. However, recent work has resulted in sometimes conflicting conclusions with regard to which facto
Recently reinforcement learning (RL) has emerged as a promising approach for quadrupedal locomotion, which can save the manual effort in conventional approaches such as designing skill-specific controllers. However, due to the complex nonlinear dynam
In this paper, we aim to improve the robustness of dynamic quadrupedal locomotion through two aspects: 1) fast model predictive foothold planning, and 2) applying LQR to projected inverse dynamic control for robust motion tracking. In our proposed pl