ﻻ يوجد ملخص باللغة العربية
We study the action of the automorphism group of the $2$ complex dimensional manifold symmetrized bidisc $mathbb{G}$ on itself. The automorphism group is 3 real dimensional. It foliates $mathbb{G}$ into leaves all of which are 3 real dimensional hypersurfaces except one, viz., the royal variety. This leads us to investigate Isaevs classification of all Kobayashi-hyperbolic 2 complex dimensional manifolds for which the group of holomorphic automorphisms has real dimension 3 studied by Isaev. Indeed, we produce a biholomorphism between the symmetrized bidisc and the domain [{(z_1,z_2)in mathbb{C} ^2 : 1+|z_1|^2-|z_2|^2>|1+ z_1 ^2 -z_2 ^2|, Im(z_1 (1+overline{z_2}))>0}] in Isaevs list. Isaev calls it $mathcal D_1$. The road to the biholomorphism is paved with various geometric insights about $mathbb{G}$. Several consequences of the biholomorphism follow including two new characterizations of the symmetrized bidisc and several new characterizations of $mathcal D_1$. Among the results on $mathcal D_1$, of particular interest is the fact that $mathcal D_1$ is a symmetrization. When we symmetrize (appropriately defined in the context in the last section) either $Omega_1$ or $mathcal{D}^{(2)}_1$ (Isaevs notation), we get $mathcal D_1$. These two domains $Omega_1$ and $mathcal{D}^{(2)}_1$ are in Isaevs list and he mentioned that these are biholomorphic to $mathbb{D} times mathbb{D}$. We produce explicit biholomorphisms between these domains and $mathbb{D} times mathbb{D}$.
We show that for every pair of matrices (S,P), having the closed symmetrized bidisc $Gamma$ as a spectral set, there is a one dimensional complex algebraic variety $Lambda$ in $Gamma$ such that for every matrix valued polynomial f, the norm of f(S,P)
We make a connection between the structure of the bidisc and a distinguished subgroup of its automorphism group. The automorphism group of the bidisc, as we know, is of dimension six and acts transitively. We observe that it contains a subgroup that
We describe recent work on the Bergman kernel of the (non-smooth) worm domain in several complex variables. An asymptotic expansion is obtained for the Bergman kernel. Mapping properties of the Bergman projection are studied. Irregularity properties
In this note, we use Rouches theorem and the pleasant properties of the arithmetic of the logarithmic derivative to establish several new results regarding the geometry of the zeros, poles, and critical points of a rational function. Included is an i
We describe all linear operators on spaces of multivariate polynomials preserving the property of being non-vanishing in open circular domains. This completes the multivariate generalization of the classification program initiated by Polya-Schur for