ﻻ يوجد ملخص باللغة العربية
We make a connection between the structure of the bidisc and a distinguished subgroup of its automorphism group. The automorphism group of the bidisc, as we know, is of dimension six and acts transitively. We observe that it contains a subgroup that is isomorphic to the automorphism group of the open unit disc and this subgroup partitions the bidisc into a complex curve and a family of strongly pseudo-convex hypersurfaces that are non-spherical as CR-manifolds. Our work reverses this process and shows that any $2$-dimensional Kobayashi-hyperbolic manifold whose automorphism group (which is known, from the general theory, to be a Lie group) has a $3$-dimensional subgroup that is non-solvable (as a Lie group) and that acts on the manifold to produce a collection of orbits possessing essentially the characteristics of the concretely known collection of orbits mentioned above, is biholomorphic to the bidisc. The distinguished subgroup is interesting in its own right. It turns out that if we consider any subdomain of the bidisc that is a union of a proper sub-collection of the collection of orbits mentioned above, then the automorphism group of this subdomain can be expressed very simply in terms of this distinguished subgroup.
In this note we show that if the automorphism group of a normal affine surface $S$ is isomorphic to the automorphism group of a Danielewski surface, then $S$ is isomorphic to a Danielewski surface.
The first result is the semicontinuity of automorphism groups for the collection of complex two-dimensional bounded pseudoconvex domains with smooth boundary of finite DAngelo type. The method of proof is new so that it simplifies the previous proof
We study the action of the automorphism group of the $2$ complex dimensional manifold symmetrized bidisc $mathbb{G}$ on itself. The automorphism group is 3 real dimensional. It foliates $mathbb{G}$ into leaves all of which are 3 real dimensional hype
We will show a rigidity of a Kahler potential of the Poincare metric with a constant length differential.
Any group $G$ gives rise to a 2-group of inner automorphisms, $mathrm{INN}(G)$. It is an old result by Segal that the nerve of this is the universal $G$-bundle. We discuss that, similarly, for every 2-group $G_{(2)}$ there is a 3-group $mathrm{INN}(G