ﻻ يوجد ملخص باللغة العربية
In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute to this total effect, complicating its interpretation. We previously proposed the separable effects (Stensrud et al, 2019) to define direct and indirect effects of the treatment on the event of interest. This definition presupposes a treatment decomposition into two components acting along two separate causal pathways, one exclusively outside of the competing event and the other exclusively through it. Unlike previous definitions of direct and indirect effects, the separable effects can be subject to empirical scrutiny in a study where separate interventions on the treatment components are available. Here we extend and generalize the notion of the separable effects in several ways, allowing for interpretation, identification and estimation under considerably weaker assumptions. We propose and discuss a definition of separable effects that is applicable to general time-varying structures, where the separable effects can still be meaningfully interpreted, even when they cannot be regarded as direct and indirect effects. We further derive weaker conditions for identification of separable effects in observational studies where decomposed treatments are not yet available; in particular, these conditions allow for time-varying common causes of the event of interest, the competing events and loss to follow-up. For these general settings, we propose semi-parametric weighted estimators that are straightforward to implement. As an illustration, we apply the estimators to study the separable effects of intensive blood pressure therapy on acute kidney injury, using data from a randomized clinical trial.
Researchers are often interested in treatment effects on outcomes that are only defined conditional on a post-treatment event status. For example, in a study of the effect of different cancer treatments on quality of life at end of follow-up, the qua
Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is
In time-to-event settings, the presence of competing events complicates the definition of causal effects. Here we propose the new separable effects to study the causal effect of a treatment on an event of interest. The separable direct effect is the
Causal effect sizes may vary among individuals and they can even be of opposite directions. When there exists serious effect heterogeneity, the population average causal effect (ACE) is not very informative. It is well-known that individual causal ef
Univariate Weibull distribution is a well-known lifetime distribution and has been widely used in reliability and survival analysis. In this paper, we introduce a new family of bivariate generalized Weibull (BGW) distributions, whose univariate margi