ﻻ يوجد ملخص باللغة العربية
In time-to-event settings, the presence of competing events complicates the definition of causal effects. Here we propose the new separable effects to study the causal effect of a treatment on an event of interest. The separable direct effect is the treatment effect on the event of interest not mediated by its effect on the competing event. The separable indirect effect is the treatment effect on the event of interest only through its effect on the competing event. Similar to Robins and Richardsons extended graphical approach for mediation analysis, the separable effects can only be identified under the assumption that the treatment can be decomposed into two distinct components that exert their effects through distinct causal pathways. Unlike existing definitions of causal effects in the presence of competing events, our estimands do not require cross-world contrasts or hypothetical interventions to prevent death. As an illustration, we apply our approach to a randomized clinical trial on estrogen therapy in individuals with prostate cancer.
When interested in a time-to-event outcome, competing events that prevent the occurrence of the event of interest may be present. In the presence of competing events, various statistical estimands have been suggested for defining the causal effect of
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, r
In competing event settings, a counterfactual contrast of cause-specific cumulative incidences quantifies the total causal effect of a treatment on the event of interest. However, effects of treatment on the competing event may indirectly contribute
The notion of exchangeability has been recognized in the causal inference literature in various guises, but only rarely in the original Bayesian meaning as a symmetry property between individual units in statistical inference. Since the latter is a s
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari