ﻻ يوجد ملخص باللغة العربية
In electronic solids with strong spin-orbit interactions (SOIs), the spin and orbital degrees of freedom of an electron are quantum mechanically entangled, which may result in an exotic multipolar order instead of a conventional dipolar order such as a magnetic order. Such a higher-degree order is called hidden order because of difficulties in experimental detection. Moreover, the number of candidate compounds is limited, especially rare in d electron systems, in which an interplay between SOIs and Coulomb interactions is expected to cause rich physics. Here, we employ state-of-the-art synchrotron X-ray diffraction techniques on a high-quality single crystal to probe subtle symmetry breaking induced by a multipolar order. We unequivocally demonstrate that the double-perovskite Ba2MgReO6 exhibits successive transitions to quadrupolar and then dipolar orders upon cooling, which is consistent with a theory considering SOIs. Our findings are a significant step towards understanding the intriguing physics of multipoles realized by spin-orbit-entangled 5d electrons.
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry rema
Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusio
Correlated oxides can exhibit complex magnetic patterns, characterized by domains with vastly different size, shape and magnetic moment spanning the material. Understanding how magnetic domains form in the presence of chemical disorder and their robu
Lacunar spinel GaTa$_4$Se$_8$ is a unique example of spin-orbit coupled Mott insulator described by molecular $j_{text{eff}}!=!3/2$ states. It becomes superconducting at T$_c$=5.8K under pressure without doping. In this work, we show, this pressure-i
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin-