ترغب بنشر مسار تعليمي؟ اضغط هنا

Strain and Spin-Orbit Coupling Induced Orbital-Ordering in Mott Insulator BaCrO3

155   0   0.0 ( 0 )
 نشر من قبل Kwan-Woo Lee
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using ab initio calculations, we have investigated an insulating tetragonally distorted perovskite BaCrO$_3$ with a formal $3d^2$ configuration, the volume of which is apparently substantially enhanced by a strain due to SrTiO$_3$ substrate. Inclusion of both correlation and spin-orbit coupling (SOC) effects leads to a metal-insulator transition and in-plane zigzag orbital-ordering (OO) of alternating singly filled $d_{xz}+id_{yz}$ and $d_{xz}-id_{yz}$ orbitals, which results in a large orbital moment $M_L$ ~ -0.78 $mu_B$ antialigned to the spin moment $M_S$ ~ $2|M_L|$ in Cr ions. Remarkably, this ordering also induces a considerable $M_L$ for apical oxygens. Our findings show metal-insulator and OO transitions, driven by an interplay among strain, correlation, and SOC, which is uncommon in 3d systems.



قيم البحث

اقرأ أيضاً

We present first principles calculations of the magnetic and orbital properties of Ba$_2$NaOsO$_6$ (BNOO), a 5$d^1$ Mott insulator with strong spin orbit coupling (SOC) in its low temperature emergent quantum phases. Our computational method takes in to direct consideration recent NMR results that established that BNOO develops a local octahedral distortion preceding the formation of long range magnetic order. We found that the two-sublattice canted ferromagnetic ground state identified in Lu etal, Nature Comm. {bf 8}, 14407 (2017) is accompanied by a two-sublattice staggered orbital ordering pattern in which the $t_{2g}$ orbitals are selectively occupied as a result of strong spin orbit coupling. The staggered orbital order found here using first principles calculations asserts the previous proposal of Chen etal, Phys. Rev. B {bf 82}, 174440 (2010) and Lu etal, Nature Comm. {bf 8}, 14407 (2017), that two-sublattice magnetic structure is the very manifestation of staggered quadrupolar order. Therefore, our results affirm the essential role of multipolar spin interactions in the microscopic description of magnetism in systems with locally entangled spin and orbital degrees of freedom.
The concept of the entanglement between spin and orbital degrees of freedom plays a crucial role in understanding various phases and exotic ground states in a broad class of materials, including orbitally ordered materials and spin liquids. We invest igate how the spin-orbital entanglement in a Mott insulator depends on the value of the spin-orbit coupling of the relativistic origin. To this end, we numerically diagonalize a 1D spin-orbital model with the Kugel-Khomskii exchange interactions between spins and orbitals on different sites supplemented by the on-site spin-orbit coupling. In the regime of small spin-orbit coupling w.r.t. the spin-orbital exchange, the ground state to a large extent resembles the one obtained in the limit of vanishing spin-orbit coupling. On the other hand, for large spin-orbit coupling the ground state can, depending on the model parameters, either still show negligible spin-orbital entanglement, or can evolve to a highly spin-orbitally entangled phase with completely distinct properties that are described by an effective XXZ model. The presented results suggest that: (i) the spin-orbital entanglement may be induced by large on-site spin-orbit coupling, as found in the 5d transition metal oxides, such as the iridates; (ii) for Mott insulators with weak spin-orbit coupling of Ising-type, such as e.g. the alkali hyperoxides, the effects of the spin-orbit coupling on the ground state can, in the first order of perturbation theory, be neglected.
We present evidence of strain-induced modulation of electron correlation effects and increased orbital anisotropy in the rutile phase of epitaxial VO$_2$/TiO$_2$ films from hard x-ray photoelectron spectroscopy and soft V L-edge x-ray absorption spec troscopy, respectively. By using the U(1) slave spin formalism, we further argue that the observed anisotropic correlation effects can be understood by a model of orbital selective Mott transition at a filling that is non-integer, but close to the half-filling. Because the overlaps of wave functions between $d$ orbitals are modified by the strain, orbitally-dependent renormalizations of the bandwidths and the crystal fields occur with the application of strain. These renormalizations generally result in different occupation numbers in different orbitals. We find that if the system has a non-integer filling number near the half-filling such as for VO$_2$, certain orbitals could reach an occupation number closer to half-filling under the strain, resulting in a strong reduction in the quasiparticle weight $Z_{alpha}$ of that orbital. Moreover, an orbital selective Mott transition, defined as the case with $Z_{alpha} = 0$ in some, but not all orbitals, could be accessed by epitaxial strain-engineering of correlated electron systems.
The intertwined charge, spin, orbital, and lattice degrees of freedom could endow 5d compounds with exotic properties. Current interest is focused on electromagnetic interactions in these materials, whereas the important role of lattice geometry rema ins to be fully recognized. For this sake, we investigate pressure-induced phase transitions in the spin-orbit Mott insulator Sr3Ir2O7 with Raman, electrical resistance, and x-ray diffraction measurements. We reveal an interesting magnetic transition coinciding with a structural transition at 14.4 GPa, but without a concurrent insulator-metal transition. The conventional correlation between magnetic and Mott insulating states is thereby absent. The observed softening of the one-magnon mode can be explained by a reduced tetragonal distortion, while the actual magnetic transition is associated with tilting of the IrO6 octahedra. This work highlights the critical role of lattice frustration in determining the high-pressure phases of Sr3Ir2O7. The ability to control electromagnetic properties via manipulating the crystal structure with pressure promises a new way to explore new quantum states in spin-orbit Mott insulators.
325 - J. Porras , J. Bertinshaw , H. Liu 2018
Spin-orbit entangled magnetic dipoles, often referred to as pseudospins, provide a new avenue to explore novel magnetism inconceivable in the weak spin-orbit coupling limit, but the nature of their low-energy interactions remains to be understood. We present a comprehensive study of the static magnetism and low-energy pseudospin dynamics in the archetypal spin-orbit Mott insulator Sr2IrO4. We find that in order to understand even basic magnetization measurements, a formerly overlooked in-plane anisotropy is fundamental. In addition to magnetometry, we use neutron diffraction, inelastic neutron scattering and resonant elastic and inelastic x-ray scattering to identify and quantify the interactions that determine the global symmetry of the system and govern the linear responses of pseudospins to external magnetic felds and their low-energy dynamics. We find that a pseudospin-only Hamiltonian is insufficient for an accurate description of the magnetism in Sr2IrO4 and that pseudospin-lattice coupling is essential. This finding should be generally applicable to other pseudospin systems with sizable orbital moments sensitive to anisotropic crystalline environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا