ترغب بنشر مسار تعليمي؟ اضغط هنا

Gemini Near-Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy Mrk 3: Feeding and Feedback on Galactic and Nuclear Scales

143   0   0.0 ( 0 )
 نشر من قبل Mitchell Revalski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the kinematics of the stars, ionized gas, and warm molecular gas in the Seyfert 2 galaxy Mrk~3 (UGC~3426) on nuclear and galactic scales with {it Gemini} Near-Infrared Field Spectrograph (NIFS) observations, previous {it Hubble Space Telescope} data, and new long-slit spectra from the {it Apache Point Observatory} ({it APO}) 3.5 m telescope. The {it APO} spectra are consistent with our previous suggestion that a galactic-scale gas/dust disk at PA $=$ 129arcdeg, offset from the major axis of the host S0 galaxy at PA $=$ 28arcdeg, is responsible for the orientation of the extended narrow-line region (ENLR). The disk is fed by an H~I tidal stream from a gas-rich spiral galaxy (UGC~3422) $sim$100 kpc to the NW of Mrk 3, and is ionized by the AGN to a distance of at least $sim$20arcsec ($sim$5.4 kpc) from the central supermassive black hole (SMBH). The kinematics within at least 320 pc of the SMBH are dominated by outflows with radial (line of sight) velocities up to 1500 km s$^{-1}$ in the ionized gas and 500 km s$^{-1}$ in the warm molecular gas, consistent with in situ heating, ionization, and acceleration of ambient gas to produce the narrow-line region (NLR) outflows. There is a disk of ionized and warm molecular gas within $sim$400 pc of the SMBH that has re-oriented close to the stellar major axis but is counter-rotating, consistent with claims of external fueling of AGN in S0 galaxies.



قيم البحث

اقرأ أيضاً

We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph (DIS) at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a 700 x 2100 pc^2 circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region (NLR) are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.
We present new JHK spectroscopy (R ~ 5000) of GQ Lup b, acquired with the near-infrared integral field spectrograph NIFS and the adaptive optics system ALTAIR at the Gemini North telescope. Angular differential imaging was used in the J and H bands t o suppress the speckle noise from GQ Lup A; we show that this approach can provide improvements in signal-to-noise ratio (S/N) by a factor of 2 - 6 for companions located at subarcsecond separations. Based on high quality observations and GAIA synthetic spectra, we estimate the companion effective temperature to Teff = 2400 +/- 100 K, its gravity to log g = 4.0 +/- 0.5, and its luminosity to log(L/L_s) = -2.47 +/- 0.28. Comparisons with the predictions of the DUSTY evolutionary tracks allow us to constrain the mass of GQ Lup b to 8 - 60 MJup, most likely in the brown dwarf regime. Compared with the spectra published by Seifahrt and collaborators, our spectra of GQ Lup b are significantly redder (by 15 - 50%) and do not show important Pabeta emission. Our spectra are in excellent agreement with the lower S/N spectra previously published by McElwain and collaborators.
We present a two-dimensional mapping of the gas flux distributions, as well as of the gas and stellar kinematics in the inner 220 pc of the Seyfert galaxy NGC 2110, using K-band integral field spectroscopy obtained with the Gemini NIFS at a spatial r esolution of ~24pc and spectral resolution of ~40 km/s. The H2 emission extends over the whole field-of-view and is attributed to heating by X-rays from the AGN and/or by shocks, while the Brgamma emission is restricted to a bi-polar region extending along the South-East-North-West direction. The masses of the warm molecular gas and of the ionized gas are ~1.4x10^3 Msun and ~1.8x10^6 Msun, respectively. The stellar kinematics present velocity dispersions reaching 250km/s and a rotation pattern reaching an amplitude of 200 km/s. The gas velocity fields present a similar rotation pattern but also additional components that we attribute to inflows and outflows most clearly observed in the molecular gas emission. The inflows are observed beyond the inner 70 pc and are associated to a spiral arm seen in blueshift to the North-East and another in redshift to the South-West. We have estimated a mass inflow rate in warm molecular gas of ~4.6x10^-4 Msun/year. Within the inner 70 pc, another kinematic component is observed in the H2 emission that can be interpreted as due to a bipolar nuclear outflow oriented along the East-West direction, with a mass-outflow rate of ~4.3x10^-4 Msun/year in warm H2.
We report on the design and status of the FLAMINGOS-2 instrument - a fully-cryogenic facility near-infrared imager and multi-object spectrograph for the Gemini 8-meter telescopes. FLAMINGOS-2 has a refractive all-spherical optical system providing 0. 18-arcsecond pixels and a 6.2-arcminute circular field-of-view on a 2048x2048-pixel HAWAII-2 0.9-2.4 mm detector array. A slit/decker wheel mechanism allows the selection of up to 9 multi-object laser-machined plates or 3 long slits for spectroscopy over a 6x2-arcminute field of view, and selectable grisms provide resolutions from $sim$ 1300 to $sim $3000 over the entire spectrograph bandpass. FLAMINGOS-2 is also compatible with the Gemini Multi-Conjugate Adaptive Optics system, providing multi-object spectroscopic capabilities over a 3x1-arcminute field with high spatial resolution (0.09-arcsec/pixel). We review the designs of optical, mechanical, electronics, software, and On-Instrument WaveFront Sensor subsystems. We also present the current status of the project, currently in final testing in mid-2006.
We present a study of the resolved emission-line regions and an inner dust/gas disk in the Seyfert 2 galaxy Mrk 3, based on Hubble Space Telescope observations. We show that the extended narrow-line region (ENLR), spanning ~4 kpc, is defined by the i ntersection of the ionizing bicone of radiation from the AGN and the inner disk, which is not coplanar with the large-scale stellar disk. This intersection leads to different position and opening angles of the ENLR compared to the narrow-line region (NLR). A number of emission-line arcs in the ENLR appear to be continuations of dust lanes in the disk, supporting this geometry. The NLR, which consists of outflowing emission-line knots spanning the central ~650 pc, is in the shape of a backwards S. This shape may arise from rotation of the gas, or it may trace the original fueling flow close to the nucleus that was ionized after the AGN turned on.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا