ﻻ يوجد ملخص باللغة العربية
We use Heun type solutions given in cite{Suzuki} for the radial Teukolsky equation, written in the background metric of the Kerr-Newman-de Sitter geometry, to calculate the quasinormal frequencies for polynomial solutions and the reflection coefficient for waves coming from the de Sitter horizon and reflected at the outer horizon of the black hole.
Gaussian curvature of the two-surface r=0, t=const is calculated for the Kerr-de Sitter and Kerr-Newman-de Sitter solutions, yielding non-zero analytical expressions for both the cases. The results obtained, on the one hand, exclude the possibility f
Combining with the small-large black hole phase transition, the thermodynamic geometry has been well applied to study the microstructure for the charged AdS black hole. In this paper, we extend the geometric approach to the rotating Kerr-AdS black ho
We develop a formalism to treat higher order (nonlinear) metric perturbations of the Kerr spacetime in a Teukolsky framework. We first show that solutions to the linearized Einstein equation with nonvanishing stress tensor can be decomposed into a pu
A class of exact solutions of the Einstein-Maxwell equations is presented which describes an accelerating and rotating charged black hole in an asymptotically de Sitter or anti-de Sitter universe. The metric is presented in a new and convenient form
Creation of thermal distribution of particles by a black hole is independent of the detail of gravitational collapse, making the construction of the eternal horizons suffice to address the problem in asymptotically flat spacetimes. For eternal de Sit