ترغب بنشر مسار تعليمي؟ اضغط هنا

Teukolsky formalism for nonlinear Kerr perturbations

190   0   0.0 ( 0 )
 نشر من قبل Stephen Green
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a formalism to treat higher order (nonlinear) metric perturbations of the Kerr spacetime in a Teukolsky framework. We first show that solutions to the linearized Einstein equation with nonvanishing stress tensor can be decomposed into a pure gauge part plus a zero mode (infinitesimal perturbation of the mass and spin) plus a perturbation arising from a certain scalar (Debye-Hertz) potential, plus a so-called corrector tensor. The scalar potential is a solution to the spin $-2$ Teukolsky equation with a source. This source, as well as the tetrad components of the corrector tensor, are obtained by solving certain decoupled ordinary differential equations involving the stress tensor. As we show, solving these ordinary differential equations reduces simply to integrations in the coordinate $r$ in outgoing Kerr-Newman coordinates, so in this sense, the problem is reduced to the Teukolsky equation with source, which can be treated by a separation of variables ansatz. Since higher order perturbations are subject to a linearized Einstein equation with a stress tensor obtained from the lower order perturbations, our method also applies iteratively to the higher order metric perturbations, and could thus be used to analyze the nonlinear coupling of perturbations in the near-extremal Kerr spacetime, where weakly turbulent behavior has been conjectured to occur. Our method could also be applied to the study of perturbations generated by a pointlike body traveling on a timelike geodesic in Kerr, which is relevant to the extreme mass ratio inspiral problem.



قيم البحث

اقرأ أيضاً

106 - M. Hortacsu 2020
We use Heun type solutions given in cite{Suzuki} for the radial Teukolsky equation, written in the background metric of the Kerr-Newman-de Sitter geometry, to calculate the quasinormal frequencies for polynomial solutions and the reflection coefficie nt for waves coming from the de Sitter horizon and reflected at the outer horizon of the black hole.
Attempts to find black hole microstates using the Hamiltonian phase space approach have been made on the Schwarzschild spacetime. Since the Schwarzschild spacetime is also in the larger family of the Kerr spacetimes, and both are asymptotically flat, the Kerr black hole is a good option for the method development. The Kerr black hole is a spinning one. We perform this analysis on the Kerr spacetime and we obtain promising results using the covariant phase space analysis. Although we have forced ourselves to use the Bondi fall-off conditions, we find the gauge degrees of freedom that could be good candidates for the black hole microstates. The charge algebra on the boundary could be a Virasoro algebra that has a different central term than the Schwarzschild black hole. The two dimensional theory on the black hole boundary is conjectured to be conformally invariant.
254 - Rong-Gen Cai , Li-Ming Cao 2013
By use of the gauge-invariant variables proposed by Kodama and Ishibashi, we obtain the most general perturbation equations in the $(m+n)$-dimensional spacetime with a warped product metric. These equations do not depend on the spectral expansions of the Laplace-type operators on the $n$-dimensional Einstein manifold. These equations enable us to have a complete gauge-invariant perturbation theory and a well-defined spectral expansion for all modes and the gauge invariance is kept for each mode. By studying perturbations of some projections of Weyl tensor in the case of $m=2$, we define three Teukolsky-like gauge-invariant variables and obtain the perturbation equations of these variables by considering perturbations of the Penrose wave equations in the $(2+n)$-dimensional Einstein spectime. In particular, we find the relations between the Teukolsky-like gauge-invariant variables and the Kodama-Ishibashi gauge-invariant variables. These relations imply that the Kodama-Ishibashi gauge-invariant variables all come from the perturbations of Weyl tensor of the spacetime.
In the context of the dynamics and stability of black holes in modified theories of gravity, we derive the Teukolsky equations for massless fields of all spins in general spherically-symmetric and static metrics. We then compute the short-ranged pote ntials associated with the radial dynamics of spin 1 and spin 1/2 fields, thereby completing the existing literature on spin 0 and 2. These potentials are crucial for the computation of Hawking radiation and quasi-normal modes emitted by black holes. In addition to the Schwarzschild metric, we apply these results and give the explicit formulas for the radial potentials in the case of charged (Reissner--Nordstrom) black holes, higher-dimensional black holes, and polymerized black holes arising from loop quantum gravity. These results are in particular relevant and applicable to a large class of regular black hole metrics. The phenomenological applications of these formulas will be the subject of a companion paper.
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply th is formalism to analyze the constraint structure of the linearized gravity in instant and front-form dynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا