ﻻ يوجد ملخص باللغة العربية
We develop a formalism to treat higher order (nonlinear) metric perturbations of the Kerr spacetime in a Teukolsky framework. We first show that solutions to the linearized Einstein equation with nonvanishing stress tensor can be decomposed into a pure gauge part plus a zero mode (infinitesimal perturbation of the mass and spin) plus a perturbation arising from a certain scalar (Debye-Hertz) potential, plus a so-called corrector tensor. The scalar potential is a solution to the spin $-2$ Teukolsky equation with a source. This source, as well as the tetrad components of the corrector tensor, are obtained by solving certain decoupled ordinary differential equations involving the stress tensor. As we show, solving these ordinary differential equations reduces simply to integrations in the coordinate $r$ in outgoing Kerr-Newman coordinates, so in this sense, the problem is reduced to the Teukolsky equation with source, which can be treated by a separation of variables ansatz. Since higher order perturbations are subject to a linearized Einstein equation with a stress tensor obtained from the lower order perturbations, our method also applies iteratively to the higher order metric perturbations, and could thus be used to analyze the nonlinear coupling of perturbations in the near-extremal Kerr spacetime, where weakly turbulent behavior has been conjectured to occur. Our method could also be applied to the study of perturbations generated by a pointlike body traveling on a timelike geodesic in Kerr, which is relevant to the extreme mass ratio inspiral problem.
We use Heun type solutions given in cite{Suzuki} for the radial Teukolsky equation, written in the background metric of the Kerr-Newman-de Sitter geometry, to calculate the quasinormal frequencies for polynomial solutions and the reflection coefficie
Attempts to find black hole microstates using the Hamiltonian phase space approach have been made on the Schwarzschild spacetime. Since the Schwarzschild spacetime is also in the larger family of the Kerr spacetimes, and both are asymptotically flat,
By use of the gauge-invariant variables proposed by Kodama and Ishibashi, we obtain the most general perturbation equations in the $(m+n)$-dimensional spacetime with a warped product metric. These equations do not depend on the spectral expansions of
In the context of the dynamics and stability of black holes in modified theories of gravity, we derive the Teukolsky equations for massless fields of all spins in general spherically-symmetric and static metrics. We then compute the short-ranged pote
In this work we study the theory of linearized gravity via the Hamilton-Jacobi formalism. We make a brief review of this theory and its Lagrangian description, as well as a review of the Hamilton-Jacobi approach for singular systems. Then we apply th