ﻻ يوجد ملخص باللغة العربية
The results of calibration by cosmic muons of a shower lead-scintillation spectrometer of the sandwich type designed to work in high-intensity photon and electron beams with an energy of 0.1 - 1.0 GeV are presented. It was found that the relative energy resolution of the spectrometer depends on the angle of entry of cosmic muons into the spectrometer in the vertical plane and does not depend on the angle of entry in the horizontal plane. The relative energy resolution of the spectrometer was 16%. Placing an additional lead-scintillation assembly in front of the spectrometer improved the relative energy resolution of the spectrometer to 9%.
We have investigated the possibility of calibrating the PMTs of scintillation detectors, using the primary scintillation produced by X-rays to induce single photoelectron response of the PMT. The high-energy tail of this response, can be approximated
We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multipl
We studied the application of statistical reconstruction algorithms, namely maximum likelihood and least squares methods, to the problem of event reconstruction in a dual phase liquid xenon detector. An iterative method was developed for in-situ reco
Cosmic ray radiation is mostly composed, at sea level, by high energy muons, which are highly penetrating particles capable of crossing kilometers of rock. Cosmic ray radiation constituted the first source of projectiles used to investigate the intim
Neutron production in lead by cosmic muons has been studied with a Gadolinium doped liquid scintillator detector. The detector was installed next to the Muon-Induced Neutron Indirect Detection EXperiment (MINIDEX), permanently located in the Tubingen