ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration and performance of the STAR Muon Telescope Detector using cosmic rays

124   0   0.0 ( 0 )
 نشر من قبل Xinjie Huang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the timing and spatial resolution from the Muon Telescope Detector (MTD) installed in the STAR experiment at RHIC. Cosmic ray muons traversing the STAR detector have an average transverse momentum of 6 GeV/c. Due to their very small multiple scattering, these cosmic muons provide an ideal tool to calibrate the detectors and measure their timing and spatial resolution. The values obtained were ~100 ps and ~1-2 cm, respectively. These values are comparable to those obtained from cosmic-ray bench tests and test beams.



قيم البحث

اقرأ أيضاً

107 - T.C. Huang , R. Ma , B. Huang 2016
Muon Telescope Detector (MTD) is a newly installed detector in the STAR experiment. It provides an excellent opportunity to study heavy quarkonium physics using the dimuon channel in heavy ion collisions. In this paper, we report the muon identificat ion performance for the MTD using proton-proton collision at $sqrt{s}$ = 500 GeV with various methods. The result using the Likelihood Ratio method shows that the muon identification efficiency can reach to $sim$90% for muons with transverse momentum greater than 3 GeV/c and the significance of J/$psi$ signal is improved by $sim$40% compared to using the basic selection.
The ANTARES experiment consists of an array of photomultipliers distributed along 12 lines and located deep underwater in the Mediterranean Sea. It searches for astrophysical neutrinos collecting the Cherenkov light induced by the charged particles, mainly muons, produced in neutrino interactions around the detector. Since at energies of $sim$10 TeV the muon and the incident neutrino are almost collinear, it is possible to use the ANTARES detector as a neutrino telescope and identify a source of neutrinos in the sky starting from a precise reconstruction of the muon trajectory. To get this result, the arrival times of the Cherenkov photons must be accurately measured. A to perform time calibrations with the precision required to have optimal performances of the instrument is described. The reconstructed tracks of the atmospheric muons in the ANTARES detector are used to determine the relative time offsets between photomultipliers. Currently, this method is used to obtain the time calibration constants for photomultipliers on different lines at a precision level of 0.5 ns. It has also been validated for calibrating photomultipliers on the same line, using a system of LEDs and laser light devices.
A feasibility demonstration of three-dimensional (3D) muon tomography was performed for infrastructure equivalent targets using the proposed portable muography detector. For the target, we used two sets of lead blocks placed at different heights. The detector consists of two muon position-sensitive detectors, made of plastic scintillating fibers (PSFs) and multi-pixel photon counters (MPPCs) with an angular resolution of 8 msr. The maximum likelihood-expectation maximization (ML-EM) method was used for the 3D imaging reconstruction of the muography simulation and measurement. For both simulation and experiment, the reconstructed positions of the blocks produce consistent results with prior knowledge of the blocks arrangement. This result demonstrates the potential of the 3D tomographic imaging of infrastructure by using eleven detection positions for portable muography detectors to image infrastructure scale targets.
The LHCb Muon system performance is presented using cosmic ray events collected in 2009. These events allowed to test and optimize the detector configuration before the LHC start. The space and time alignment and the measurement of chamber efficiency , time resolution and cluster size are described in detail. The results are in agreement with the expected detector performance.
155 - K. Abe , Y. Hayato , T. Iida 2013
Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics h ave been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT). In this context, we developed an in-situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a detector. The second part describes the modeling of the detector in our Monte Carlo simulation, including in particular the optical properties of its water target and their variability over time. Detailed studies on the water quality are also presented. As a result of this work, we achieved a precision sufficient for physics analysis over a wide energy range (from a few MeV to above a TeV). For example, the charge determination was understood at the 1% level, and the timing resolution was 2.1 nsec at the one-photoelectron charge level and 0.5 nsec at the 100-photoelectron charge level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا