ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical amplification and transmission of attenuated multi-soliton based on spectral characteristics of Akhmediev breather

62   0   0.0 ( 0 )
 نشر من قبل Yang Guangye
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze temporal and spectral characteristics of Akhmediev breather and establish amplification and transmission of attenuated multi-soliton in nonlinear optical fiber. Our results show that the attenuated multi-soliton can be converted into Akhmediev breather through a judicious modulation of the spectrum. Subsequently, the maximally compressed pulse train of Akhmediev breather can be used to establish a robust breathing transmission by another spectrum modulation. In addition, the influence of the spectral modulation intensity on the excitation of Akhmediev breather and transmission of maximally compressed pulse train are also discussed.



قيم البحث

اقرأ أيضاً

We present experimental and numerical data on the supercontinuum generation in an optical fiber pumped in the normal dispersion range where the seeded dark and the spontaneously generated bright solitons contribute to the spectral broadening. We repo rt the dispersive radiation arising from the interaction of the bright and dark solitons. This radiation consists of the two weak dispersing pulses that continuously shift their frequencies and shape the short and long wavelength wings of the supercontinuum spectrum.
79 - Ugo Andral 2019
We investigate in detail the qualitative similarities between the pulse localization characteristics observed using sinusoidal phase modulation during linear propagation and those seen during the evolution of Akhmediev breathers during propagation in a system governed by the nonlinear Schr{o}dinger equation. The profiles obtained at the point of maximum focusing indeed present very close temporal and spectral features. If the respective linear and nonlinear longitudinal evolutions of those profiles are similar in the vicinity of the point of maximum focusing, they may diverge significantly for longer propagation distance. Our analysis and numerical simulations are confirmed by experiments performed in optical fiber.
The Akhmediev breather (AB) and its M-soliton generalization $AB_M$ are exact solutions of the focusing NLS equation periodic in space and exponentially localized in time over the constant unstable background; they describe the appearance of $M$ unst able nonlinear modes and their interaction, and they are expected to play a relevant role in the theory of periodic anomalous (rogue) waves (AWs) in nature. It is rather well established that they are unstable with respect to small perturbations of the NLS equation. Concerning perturbations of these solutions within the NLS dynamics, there is the following common believe in the literature. Let the NLS background be unstable with respect to the first $N$ modes; then i) if the $M$ unstable modes of the $AB_M$ solution are strictly contained in this set ($M<N$), then the $AB_M$ is unstable; ii) if $M=N$, the so-called saturation of the instability, then the $AB_M$ solution is neutrally stable. We argue instead that the $AB_M$ solution is always unstable, even in the saturation case $M=N$, and we prove it in the simplest case $M=N=1$. We first prove the linear instability, constructing two examples of $x$-periodic solutions of the linearized theory growing exponentially in time. Then we investigate the nonlinear instability using our previous results showing that i) a perturbed AB initial condition evolves into an exact Fermi-Pasta-Ulam-Tsingou (FPUT) recurrence of ABs described in terms of elementary functions of the initial data, to leading order; ii) the AB solution is more unstable than the background solution, and its instability increases as $Tto 0$, where $T$ is the AB appearance parameter. Although the AB solution is linearly and nonlinearly unstable, it is relevant in nature, since its instability generates a FPUT recurrence of ABs. These results suitably generalize to the case $M=N>1$.
Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years with the advent and progress in nonlinear optical fibers and fiber lasers, photonic crystals, wave-guided wave systems and most recently optical ring microresonator devices. In this work an extensive analysis of characteristic features of soliton crystals is carried out, with emphasis on their one-to-one correspondance with Elliptic solitons. In this purpose we examine their formation, their stability and their dynamics in ring-shaped nonlinear optical media within the framework of the Lugiato-Lefever equation. The stability analysis deals with internal modes of the system via a $2times2$-matrix Lame type eigenvalue problem, the spectrum of which is shown to possess a rich set of boundstates consisting of stable zero-fequency modes and unstable decaying as well as growing modes. Turning towards the dynamics of Elliptic solitons in ring-shaped fiber resonators with Kerr nonlinearity, first of all we propose a collective-coordinate approach, based on a Lagrangian formalism suitable for Elliptic-soliton solutions to the nonlinear Schrodinger equation with an arbitrary perturbation. Next we derive time evolutions of Elliptic-soliton parameters in the specific context of ring-shaped optical fiber resonators, where the optical field evolution is tought to be governed by the Lugiato-Lefever equation. By solving numerically the collective-coordinate equations an analysis of the amplitude, the position, the phase of internal oscillations, the phase velocity and the energy is carried out and reveals a complex dynamics of the Elliptic soliton in ring-shaped optical microresonators.
Soliton microcombs constitute chip-scale optical frequency combs, and have the potential to impact a myriad of applications from frequency synthesis and telecommunications to astronomy. The requirement on external driving lasers has been significantl y relaxed with the demonstration of soliton formation via self-injection locking of the pump laser to the microresonator. Yet to date, the dynamics of this process has not been fully understood. Prior models of self-injection locking were not able to explain sufficiently large detunings, crucial for soliton formation. Here we develop a theoretical model of self-injection locking to a nonlinear microresonator (nonlinear self-injection locking) for the first time and show that self- and cross-phase modulation of the clockwise and counter-clockwise light enables soliton formation. Using an integrated soliton microcomb of directly detectable 30 GHz repetition rate, consisting of a DFB laser self-injection-locked to a Si3N4 microresonator chip, we study the soliton formation dynamics via self-injection locking, as well as the repetition rate evolution, experimentally. We reveal that Kerr nonlinearity in microresonator significantly modifies locking dynamics, making laser emission frequency red detuned. We propose and implement a novel technique for measurements of the nonlinear frequency tuning curve and concurrent observation of microcomb states switching in real time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا