ﻻ يوجد ملخص باللغة العربية
This paper investigates a new class of non-convex optimization, which provides a unified framework for linear precoding in single/multi-user multiple-input multiple-output (MIMO) channels with arbitrary input distributions. The new optimization is called generalized quadratic matrix programming (GQMP). Due to the nondeterministic polynomial time (NP)-hardness of GQMP problems, instead of seeking globally optimal solutions, we propose an efficient algorithm which is guaranteed to converge to a Karush-Kuhn-Tucker (KKT) point. The idea behind this algorithm is to construct explicit concave lower bounds for non-convex objective and constraint functions, and then solve a sequence of concave maximization problems until convergence. In terms of application, we consider a downlink underlay secure cognitive radio (CR) network, where each node has multiple antennas. We design linear precoders to maximize the average secrecy (sum) rate with finite-alphabet inputs and statistical channel state information (CSI) at the transmitter. The precoding problems under secure multicast/broadcast scenarios are GQMP problems, and thus they can be solved efficiently by our proposed algorithm. Several numerical examples are provided to show the efficacy of our algorithm.
This paper investigates the hybrid precoding design for millimeter wave (mmWave) multiple-input multiple-output (MIMO) systems with finite-alphabet inputs. The precoding problem is a joint optimization of analog and digital precoders, and we treat it
The industry and academia have proposed many distributed graph processing systems. However, the existing systems are not friendly enough for users like data analysts and algorithm engineers. On the one hand, the programing models and interfaces diffe
We investigate the fading cognitive multiple access wiretap channel (CMAC-WT), in which two secondary-user transmitters (STs) send secure messages to a secondary-user receiver (SR) in the presence of an eavesdropper (ED) and subject to interference t
In this work, we propose an iterative scheme for computing a linear precoder that takes into account the impact of hardware impairments in the multiuser multiple-input single-output downlink. We particularly focus on the case when the transmitter is
This paper unveils the importance of intelligent reflecting surface (IRS) in a wireless powered sensor network (WPSN). Specifically, a multi-antenna power station (PS) employs energy beamforming to provide wireless charging for multiple Internet of T