ﻻ يوجد ملخص باللغة العربية
The industry and academia have proposed many distributed graph processing systems. However, the existing systems are not friendly enough for users like data analysts and algorithm engineers. On the one hand, the programing models and interfaces differ a lot in the existing systems, leading to high learning costs and program migration costs. On the other hand, these graph processing systems are tightly bound to the underlying distributed computing platforms, requiring users to be familiar with distributed computing. To improve the usability of distributed graph processing, we propose a unified distributed graph programming framework UniGPS. Firstly, we propose a unified cross-platform graph programming model VCProg for UniGPS. VCProg hides details of distributed computing from users. It is compatible with the popular graph programming models Pregel, GAS, and Push-Pull. VCProg programs can be executed by compatible distributed graph processing systems without modification, reducing the learning overheads of users. Secondly, UniGPS supports Python as the programming language. We propose an interprocess-communication-based execution environment isolation mechanism to enable Java/C++-based systems to call user-defined methods written in Python. The experimental results show that UniGPS enables users to process big graphs beyond the memory capacity of a single machine without sacrificing usability. UniGPS shows near-linear data scalability and machine scalability.
IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, iden- tify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processin
A major driver behind the success of modern machine learning algorithms has been their ability to process ever-larger amounts of data. As a result, the use of distributed systems in both research and production has become increasingly prevalent as a
Serverless computing has emerged as a promising alternative to infrastructure- (IaaS) and platform-as-a-service (PaaS)cloud platforms for applications with ample parallelism and intermittent activity. Serverless promises greater resource elasticity,
The trade-off between pull-based and push-based graph processing engines is well-understood. On one hand, pull-based engines can achieve higher throughput because their workloads are read-dominant, rather than write-dominant, and can proceed without
We describe a software framework for solving user equilibrium traffic assignment problems. The design is based on the formulation of the problem as a variational inequality. The software implements these as well as several numerical methods for find