ﻻ يوجد ملخص باللغة العربية
In this work, we study the circuit complexity for generalized coherent states in thermal systems by adopting the covariance matrix approach. We focus on the coherent thermal (CT) state, which is non-Gaussian and has a nonvanishing one-point function. We find that even though the CT state cannot be fully determined by the symmetric two-point function, the circuit complexity can still be computed in the framework of the covariance matrix formalism by properly enlarging the covariance matrix. Now the group generated by the unitary is the semiproduct of translation and the symplectic group. If the reference state is Gaussian, the optimal geodesic is still be generated by a horizontal generator such that the circuit complexity can be read from the generalized covariance matrix associated to the target state by taking the cost function to be $F_2$. For a single harmonic oscillator, we discuss carefully the complexity and its formation in the cases that the reference states are Gaussian and the target space is excited by a single mode or double modes. We show that the study can be extended to the free scalar field theory.
We propose a modification to Nielsens circuit complexity for Hamiltonian simulation using the Suzuki-Trotter (ST) method, which provides a network like structure for the quantum circuit. This leads to an optimized gate counting linear in the geodesic
Computation of circuit complexity has gained much attention in the Theoretical Physics community in recent times to gain insights about the chaotic features and random fluctuations of fields in the quantum regime. Recent studies of circuit complexity
We consider the circuit complexity of free bosons, or equivalently free fermions, in 1+1 dimensions. Motivated by the results of [1] and [2, 3] who found different behavior in the complexity of free bosons and fermions, in any dimension, we consider
Recently in various theoretical works, path-breaking progress has been made in recovering the well-known Page Curve of an evaporating black hole with Quantum Extremal Islands, proposed to solve the long-standing black hole information loss problem re
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared