ﻻ يوجد ملخص باللغة العربية
We present a method that outputs a sequence of simple unitary operations to prepare a given quantum state that is a generalized coherent state. Our method takes as inputs the expectation values of some relevant observables on the state to be prepared. Such expectation values can be estimated by performing projective measurements on $O(M^3 log(M/delta)/epsilon^2)$ copies of the state, where $M$ is the dimension of an associated Lie algebra, $epsilon$ is a precision parameter, and $1-delta$ is the required confidence level. The method can be implemented on a classical computer and runs in time $O(M^4 log(M/epsilon))$. It provides $O(M log(M/epsilon))$ simple unitaries that form the sequence. The number of all computational resources is then polynomial in $M$, making the whole procedure very efficient in those cases where $M$ is significantly smaller than the Hilbert space dimension. When the algebra of relevant observables is determined by some Pauli matrices, each simple unitary may be easily decomposed into two-qubit gates. We discuss applications to quantum state tomography and classical simulations of quantum circuits.
Quantum circuit synthesis is the process in which an arbitrary unitary operation is decomposed into a sequence of gates from a universal set, typically one which a quantum computer can implement both efficiently and fault-tolerantly. As physical impl
Generalized coherent states are developed for SU(n) systems for arbitrary $n$. This is done by first iteratively determining explicit representations for the SU(n) coherent states, and then determining parametric representations useful for applicatio
Variational quantum algorithms that are used for quantum machine learning rely on the ability to automatically differentiate parametrized quantum circuits with respect to underlying parameters. Here, we propose the rules for differentiating quantum c
The current phase of quantum computing is in the Noisy Intermediate-Scale Quantum (NISQ) era. On NISQ devices, two-qubit gates such as CNOTs are much noisier than single-qubit gates, so it is essential to minimize their count. Quantum circuit synthes
Quantum Computing has been evolving in the last years. Although nowadays quantum algorithms performance has shown superior to their classical counterparts, quantum decoherence and additional auxiliary qubits needed for error tolerance routines have b