ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3D non-LTE solar nitrogen abundance from atomic lines

144   0   0.0 ( 0 )
 نشر من قبل Anish Amarsi
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Nitrogen is an important element in various fields of stellar and Galactic astronomy, and the solar nitrogen abundance is crucial as a yardstick for comparing different objects in the cosmos. In order to obtain a precise and accurate value for this abundance, we carried out N i line formation calculations in a 3D radiative-hydrodynamic STAGGER model solar atmosphere, in full 3D non-local thermodynamic equilibrium (non-LTE), using a model atom that includes physically-motivated descriptions for the inelastic collisions of N i with free electrons and with neutral hydrogen. We selected five N i lines of high excitation energy to study in detail, based on their strengths and on their being relatively free of blends. We found that these lines are slightly strengthened from non-LTE photon losses and from 3D granulation effects, resulting in negative abundance corrections of around $-0.01$ dex and $-0.04$ dex respectively. Our advocated solar nitrogen abundance is $logepsilon_{mathrm{N}} = 7.77$, with the systematic $1sigma$ uncertainty estimated to be $0.05$ dex. This result is consistent with earlier studies after correcting for differences in line selections and equivalent widths.



قيم البحث

اقرأ أيضاً

Carbon, nitrogen, and oxygen are the fourth, sixth, and third most abundant elements in the Sun. Their abundances remain hotly debated due to the so-called solar modelling problem that has persisted for almost $20$ years. We revisit this issue by pre senting a homogeneous analysis of $408$ molecular lines across $12$ diagnostic groups, observed in the solar intensity spectrum. Using a realistic 3D radiative-hydrodynamic model solar photosphere and LTE (local thermodynamic equilibrium) line formation, we find $logepsilon_{C} = 8.47pm0.02$, $logepsilon_{N} = 7.89pm0.04$, and $logepsilon_{O} = 8.70pm0.04$. The stipulated uncertainties mainly reflect the sensitivity of the results to the model atmosphere; this sensitivity is correlated between the different diagnostic groups, which all agree with the mean result to within $0.03$ dex. For carbon and oxygen, the molecular results are in excellent agreement with our 3D non-LTE analyses of atomic lines. For nitrogen, however, the molecular indicators give a $0.12$ dex larger abundance than the atomic indicators, and our best estimate of the solar nitrogen abundance is given by the mean: $7.83$ dex. The solar oxygen abundance advocated here is close to our earlier determination of $8.69$ dex, and so the present results do not significantly alleviate the solar modelling problem.
CONTEXT: In recent years, the solar chemical abundances have been studied in considerable detail because of discrepant values of solar metallicity inferred from different indicators, i.e., on the one hand, the sub-solar photospheric abundances result ing from spectroscopic chemical composition analyses with the aid of 3D hydrodynamical models of the solar atmosphere, and, on the other hand, the high metallicity inferred by helioseismology. AIMS: After investigating the solar oxygen abundance using a CO5BOLD 3D hydrodynamical solar model in previous work, we undertake a similar approach studying the solar abundance of nitrogen, since this element accounts for a significant fraction of the overall solar metallicity, Z. METHOD: We used a selection of atomic spectral lines to determine the solar nitrogen abundance, relying mainly on equivalent width measurements in the literature. We investigate the influence on the abundance analysis, of both deviations from local thermodynamic equilibrium (NLTE effects) and photospheric inhomogeneities (granulation effects). RESULTS: We recommend use of a solar nitrogen abundance of A(N)=7.86+-0.12 whose error bar reflects the line-to-line scatter. CONCLUSION: The solar metallicity implied by the CO5BOLD-based nitrogen and oxygen abundances is in the range 0.0145<= Z <= 0.0167. This result is a step towards reconciling photospheric abundances with helioseismic constraints on Z. Our most suitable estimates are Z=0.0156 and Z/X=0.0213.
443 - E. Caffau 2010
The use of hydrodynamical simulations, the selection of atomic data, and the computation of deviations from local thermodynamical equilibrium for the analysis of the solar spectra have implied a downward revision of the solar metallicity. We are in t he process of using the latest simulations computed with the CO5BOLD code to reassess the solar chemical composition. We determine the solar photospheric carbon abundance by using a radiation-hydrodynamical CO5BOLD model, and compute the departures from local thermodynamical equilibrium by using the Kiel code. We measure equivalent widths of atomic CI lines on high resolution, high signal-to-noise ratio solar atlases. Deviations from local thermodynamic equilibrium are computed in 1D with the Kiel code. Our recommended value for the solar carbon abundance, relies on 98 independent measurements of observed lines and is A(C)=8.50+-0.06, the quoted error is the sum of statistical and systematic error. Combined with our recent results for the solar oxygen and nitrogen abundances this implies a solar metallicity of Z=0.0154 and Z/X=0.0211. Our analysis implies a solar carbon abundance which is about 0.1 dex higher than what was found in previous analysis based on different 3D hydrodynamical computations. The difference is partly driven by our equivalent width measurements (we measure, on average, larger equivalent widths with respect to the other work based on a 3D model), in part it is likely due to the different properties of the hydrodynamical simulations and the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD analyses is in slightly better agreement with the constraints of helioseismology than the previous 3D abundance results. (Abridged)
Context. The pursuit of more realistic spectroscopic modelling and consistent abundances has led us to begin a new series of papers designed to improve current solar and stellar abundances of various atomic species. To achieve this, we have began upd ating the three-dimensional (3D) non-local thermodynamic equilibrium (non-LTE) radiative transfer code, Multi3D, and the equivalent one-dimensional (1D) non-LTE radiative transfer code, MULTI. Aims. We examine our improvements to these codes by redetermining the solar barium abundance. Barium was chosen for this test as it is an important diagnostic element of the s-process in the context of galactic chemical evolution. New Ba II + H collisional data for excitation and charge exchange reactions computed from first principles had recently become available and were included in the model atom. The atom also includes the effects of isotopic line shifts and hyperfine splitting. Method. A grid of 1D LTE barium lines were constructed with MULTI and fit to the four Ba II lines available to us in the optical region of the solar spectrum. Abundance corrections were then determined in 1D non-LTE, 3D LTE, and 3D non-LTE. A new 3D non-LTE solar barium abundance was computed from these corrections. Results. We present for the first time the full 3D non-LTE barium abundance of $A({rm Ba})=2.27pm0.02pm0.01$, which was derived from four individual fully consistent barium lines. Errors here represent the systematic and random errors, respectively.
Resonance spectral lines such as H I Ly {alpha}, Mg II h&k, and Ca II H&K that form in the solar chromosphere are influenced by the effects of 3D radiative transfer as well as partial redistribution (PRD). So far no one has modeled these lines includ ing both effects simultaneously owing to the high computing demands of existing algorithms. Such modeling is however indispensable for accurate diagnostics of the chromosphere. We present a computationally tractable method to treat PRD scattering in 3D model atmospheres using a 3D non-LTE radiative transfer code. To make the method memory-friendly, we use the hybrid approximation of Leenaarts et al. (2012) for the redistribution integral. To make it fast, we use linear interpolation on equidistant frequency grids. We verify our algorithm against computations with the RH code and analyze it for stability, convergence, and usefulness of acceleration using model atoms of Mg II with the h&k lines and H I with the Ly {alpha} line treated in PRD. A typical 3D PRD solution can be obtained in a model atmosphere with $252 times 252 times 496$ coordinate points in 50 000--200 000 CPU hours, which is a factor ten slower than computations assuming complete redistribution. We illustrate the importance of the joint action of PRD and 3D effects for the Mg II h&k lines for disk-center intensities as well as the center-to-limb variation. The proposed method allows simulating PRD lines in time series of radiation-MHD models in order to interpret observations of chromospheric lines at high spatial resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا