ترغب بنشر مسار تعليمي؟ اضغط هنا

The solar photospheric abundance of carbon.Analysis of atomic carbon lines with the CO5BOLD solar model

444   0   0.0 ( 0 )
 نشر من قبل Piercarlo Bonifacio
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Caffau




اسأل ChatGPT حول البحث

The use of hydrodynamical simulations, the selection of atomic data, and the computation of deviations from local thermodynamical equilibrium for the analysis of the solar spectra have implied a downward revision of the solar metallicity. We are in the process of using the latest simulations computed with the CO5BOLD code to reassess the solar chemical composition. We determine the solar photospheric carbon abundance by using a radiation-hydrodynamical CO5BOLD model, and compute the departures from local thermodynamical equilibrium by using the Kiel code. We measure equivalent widths of atomic CI lines on high resolution, high signal-to-noise ratio solar atlases. Deviations from local thermodynamic equilibrium are computed in 1D with the Kiel code. Our recommended value for the solar carbon abundance, relies on 98 independent measurements of observed lines and is A(C)=8.50+-0.06, the quoted error is the sum of statistical and systematic error. Combined with our recent results for the solar oxygen and nitrogen abundances this implies a solar metallicity of Z=0.0154 and Z/X=0.0211. Our analysis implies a solar carbon abundance which is about 0.1 dex higher than what was found in previous analysis based on different 3D hydrodynamical computations. The difference is partly driven by our equivalent width measurements (we measure, on average, larger equivalent widths with respect to the other work based on a 3D model), in part it is likely due to the different properties of the hydrodynamical simulations and the spectrum synthesis code. The solar metallicity we obtain from the CO5BOLD analyses is in slightly better agreement with the constraints of helioseismology than the previous 3D abundance results. (Abridged)



قيم البحث

اقرأ أيضاً

CONTEXT: In recent years, the solar chemical abundances have been studied in considerable detail because of discrepant values of solar metallicity inferred from different indicators, i.e., on the one hand, the sub-solar photospheric abundances result ing from spectroscopic chemical composition analyses with the aid of 3D hydrodynamical models of the solar atmosphere, and, on the other hand, the high metallicity inferred by helioseismology. AIMS: After investigating the solar oxygen abundance using a CO5BOLD 3D hydrodynamical solar model in previous work, we undertake a similar approach studying the solar abundance of nitrogen, since this element accounts for a significant fraction of the overall solar metallicity, Z. METHOD: We used a selection of atomic spectral lines to determine the solar nitrogen abundance, relying mainly on equivalent width measurements in the literature. We investigate the influence on the abundance analysis, of both deviations from local thermodynamic equilibrium (NLTE effects) and photospheric inhomogeneities (granulation effects). RESULTS: We recommend use of a solar nitrogen abundance of A(N)=7.86+-0.12 whose error bar reflects the line-to-line scatter. CONCLUSION: The solar metallicity implied by the CO5BOLD-based nitrogen and oxygen abundances is in the range 0.0145<= Z <= 0.0167. This result is a step towards reconciling photospheric abundances with helioseismic constraints on Z. Our most suitable estimates are Z=0.0156 and Z/X=0.0213.
557 - A. Mucciarelli 2008
Context. Europium is an almost pure r-process element, which may be useful as a reference in nucleocosmochronology. Aims. To determine the photospheric solar abundance using CO5BOLD 3-D hydrodynamical model atmospheres. Methods. Disc-centre and integ rated-flux observed solar spectra are used. The europium abundance is derived from the equivalent width measurements. As a reference 1D model atmospheres have been used, in addition. Results. The europium photospheric solar abundance is 0.52 +- 0.02 in agreement with previous determinations. We also determine the photospheric isotopic fraction of Eu(151) to be 49 % +- 2.3 % from the intensity spectra and 50% +-2.3 from the flux spectra. This compares well to the the meteoritic isotopic fraction 47.8%. We explore the 3D corrections also for dwarfs and sub-giants in the temperature range ~5000 K to ~6500 K and solar and 1/10--solar metallicities and find them to be negligible for all the models investigated. Conclusions. Our photospheric Eu abundance is in good agreement with previous determinations based on 1D models. This is in line with our conclusion that 3D effects for this element are negligible in the case of the Sun.
Nitrogen is an important element in various fields of stellar and Galactic astronomy, and the solar nitrogen abundance is crucial as a yardstick for comparing different objects in the cosmos. In order to obtain a precise and accurate value for this a bundance, we carried out N i line formation calculations in a 3D radiative-hydrodynamic STAGGER model solar atmosphere, in full 3D non-local thermodynamic equilibrium (non-LTE), using a model atom that includes physically-motivated descriptions for the inelastic collisions of N i with free electrons and with neutral hydrogen. We selected five N i lines of high excitation energy to study in detail, based on their strengths and on their being relatively free of blends. We found that these lines are slightly strengthened from non-LTE photon losses and from 3D granulation effects, resulting in negative abundance corrections of around $-0.01$ dex and $-0.04$ dex respectively. Our advocated solar nitrogen abundance is $logepsilon_{mathrm{N}} = 7.77$, with the systematic $1sigma$ uncertainty estimated to be $0.05$ dex. This result is consistent with earlier studies after correcting for differences in line selections and equivalent widths.
In the Sun, the two forbidden [OI] lines at 630 and 636 nm were previously found to provide discrepant oxygen abundances. aims: We investigate whether this discrepancy is peculiar to the Sun or whether it is also observed in other stars. method: We m ake use of high-resolution, high signal-to-noise ratio spectra of four dwarf to turn-off stars, five giant stars, and one sub-giant star observed with THEMIS, HARPS, and UVES to investigate the coherence of the two lines. results: The two lines provide oxygen abundances that are consistent, within observational errors, in all the giant stars examined by us. On the other hand, for the two dwarf stars for which a measurement was possible, for Procyon, and for the sub-giant star Capella, the 636 nm line provides systematically higher oxygen abundances, as already seen for the Sun. conclusions: The only two possible reasons for the discrepancy are a serious error in the oscillator strength of the NiI line blending the 630 nm line or the presence of an unknown blend in the 636 nm line, which makes the feature stronger. The CN lines blending the 636 nm line cannot be responsible for the discrepancy. The CaI autoionisation line, on the red wing of which the 636 nm line is formed, is not well modelled by our synthetic spectra. However, a better reproduction of this line would result in even higher abundances from the 636 nm, thus increasing the discrepancy.
111 - M. Steffen 2015
The solar photospheric oxygen abundance is still widely debated. Adopting the solar chemical composition based on the low oxygen abundance, as determined with the use of three-dimensional (3D) hydrodynamical model atmospheres, results in a well-known mismatch between theoretical solar models and helioseismic measurements that is so far unresolved. We carry out an independent redetermination of the solar oxygen abundance by investigating the center-to-limb variation of the OI IR triplet lines at 777 nm in different sets of spectra with the help of detailed synthetic line profiles based on 3D hydrodynamical CO5BOLD model atmospheres and 3D non-LTE line formation calculations with NLTETD. The idea is to simultaneously derive the oxygen abundance,A(O), and the scaling factor SH that describes the cross-sections for inelastic collisions with neutral hydrogen relative the classical Drawin formula. The best fit of the center-to-limb variation of the triplet lines achieved with the CO5BOLD 3D solar model is clearly of superior quality compared to the line profile fits obtained with standard 1D model atmospheres. Our best estimate of the 3D non-LTE solar oxygen abundance is A(O) = 8.76 +/- 0.02, with the scaling factor SH in the range between 1.2 and 1.8. All 1D non-LTE models give much lower oxygen abundances, by up to -0.15 dex. This is mainly a consequence of the assumption of a $mu$-independent microturbulence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا