ﻻ يوجد ملخص باللغة العربية
Synthetic Minority Over-sampling Technique (SMOTE) is the most popular over-sampling method. However, its random nature makes the synthesized data and even imbalanced classification results unstable. It means that in case of running SMOTE n different times, n different synthesized in-stances are obtained with n different classification results. To address this problem, we adapt the SMOTE idea in deep learning architecture. In this method, a deep neural network regression model is used to train the inputs and outputs of traditional SMOTE. Inputs of the proposed deep regression model are two randomly chosen data points which are concatenated to form a double size vector. The outputs of this model are corresponding randomly interpolated data points between two randomly chosen vectors with original dimension. The experimental results show that, Deep SMOTE can outperform traditional SMOTE in terms of precision, F1 score and Area Under Curve (AUC) in majority of test cases.
Adam is a widely used optimization method for training deep learning models. It computes individual adaptive learning rates for different parameters. In this paper, we propose a generalization of Adam, called Adambs, that allows us to also adapt to d
Oversmoothing has been assumed to be the major cause of performance drop in deep graph convolutional networks (GCNs). In this paper, we propose a new view that deep GCNs can actually learn to anti-oversmooth during training. This work interprets a st
In domains such as health care and finance, shortage of labeled data and computational resources is a critical issue while developing machine learning algorithms. To address the issue of labeled data scarcity in training and deployment of neural netw
Episodic training is a core ingredient of few-shot learning to train models on tasks with limited labelled data. Despite its success, episodic training remains largely understudied, prompting us to ask the question: what is the best way to sample epi
Sampling is a widely used graph reduction technique to accelerate graph computations and simplify graph visualizations. By comprehensively analyzing the literature on graph sampling, we assume that existing algorithms cannot effectively preserve mino