ترغب بنشر مسار تعليمي؟ اضغط هنا

Preserving Minority Structures in Graph Sampling

62   0   0.0 ( 0 )
 نشر من قبل Ying Zhao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Sampling is a widely used graph reduction technique to accelerate graph computations and simplify graph visualizations. By comprehensively analyzing the literature on graph sampling, we assume that existing algorithms cannot effectively preserve minority structures that are rare and small in a graph but are very important in graph analysis. In this work, we initially conduct a pilot user study to investigate representative minority structures that are most appealing to human viewers. We then perform an experimental study to evaluate the performance of existing graph sampling algorithms regarding minority structure preservation. Results confirm our assumption and suggest key points for designing a new graph sampling approach named mino-centric graph sampling (MCGS). In this approach, a triangle-based algorithm and a cut-point-based algorithm are proposed to efficiently identify minority structures. A set of importance assessment criteria are designed to guide the preservation of important minority structures. Three optimization objectives are introduced into a greedy strategy to balance the preservation between minority and majority structures and suppress the generation of new minority structures. A series of experiments and case studies are conducted to evaluate the effectiveness of the proposed MCGS.



قيم البحث

اقرأ أيضاً

In the era of big data, graph sampling is indispensable in many settings. Existing sampling methods are mostly designed for static graphs, and aim to preserve basic structural properties of the original graph (such as degree distribution, clustering coefficient etc.) in the sample. We argue that for any sampling method it is impossible to produce an universal representative sample which can preserve all the properties of the original graph; rather sampling should be application specific (such as preserving hubs - needed for information diffusion). Here we consider community detection as an application scenario. We propose ComPAS, a novel sampling strategy that unlike previous methods, is not only designed for streaming graphs (which is a more realistic representation of a real-world scenario) but also preserves the community structure of the original graph in the sample. Empirical results on both synthetic and different real-world graphs show that ComPAS is the best to preserve the underlying community structure with average performance reaching 73.2% of the most informed algorithm for static graphs.
Graphs are naturally used to describe the structures of various real-world systems in biology, society, computer science etc., where subgraphs or motifs as basic blocks play an important role in function expression and information processing. However , existing research focuses on the basic statistics of certain motifs, largely ignoring the connection patterns among them. Recently, a subgraph network (SGN) model is proposed to study the potential structure among motifs, and it was found that the integration of SGN can enhance a series of graph classification methods. However, SGN model lacks diversity and is of quite high time complexity, making it difficult to widely apply in practice. In this paper, we introduce sampling strategies into SGN, and design a novel sampling subgraph network model, which is scale-controllable and of higher diversity. We also present a hierarchical feature fusion framework to integrate the structural features of diverse sampling SGNs, so as to improve the performance of graph classification. Extensive experiments demonstrate that, by comparing with the SGN model, our new model indeed has much lower time complexity (reduced by two orders of magnitude) and can better enhance a series of graph classification methods (doubling the performance enhancement).
Synthetic Minority Over-sampling Technique (SMOTE) is the most popular over-sampling method. However, its random nature makes the synthesized data and even imbalanced classification results unstable. It means that in case of running SMOTE n different times, n different synthesized in-stances are obtained with n different classification results. To address this problem, we adapt the SMOTE idea in deep learning architecture. In this method, a deep neural network regression model is used to train the inputs and outputs of traditional SMOTE. Inputs of the proposed deep regression model are two randomly chosen data points which are concatenated to form a double size vector. The outputs of this model are corresponding randomly interpolated data points between two randomly chosen vectors with original dimension. The experimental results show that, Deep SMOTE can outperform traditional SMOTE in terms of precision, F1 score and Area Under Curve (AUC) in majority of test cases.
Arising user-centric graph applications such as route planning and personalized social network analysis have initiated a shift of paradigms in modern graph processing systems towards multi-query analysis, i.e., processing multiple graph queries in pa rallel on a shared graph. These applications generate a dynamic number of localized queries around query hotspots such as popular urban areas. However, existing graph processing systems are not yet tailored towards these properties: The employed methods for graph partitioning and synchronization management disregard query locality and dynamism which leads to high query latency. To this end, we propose the system Q-Graph for multi-query graph analysis that considers query locality on three levels. (i) The query-aware graph partitioning algorithm Q-cut maximizes query locality to reduce communication overhead. (ii) The method for synchronization management, called hybrid barrier synchronization, allows for full exploitation of local queries spanning only a subset of partitions. (iii) Both methods adapt at runtime to changing query workloads in order to maintain and exploit locality. Our experiments show that Q-cut reduces average query latency by up to 57 percent compared to static query-agnostic partitioning algorithms.
We introduce GraSPy, a Python library devoted to statistical inference, machine learning, and visualization of random graphs and graph populations. This package provides flexible and easy-to-use algorithms for analyzing and understanding graphs with a scikit-learn compliant API. GraSPy can be downloaded from Python Package Index (PyPi), and is released under the Apache 2.0 open-source license. The documentation and all releases are available at https://neurodata.io/graspy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا