ﻻ يوجد ملخص باللغة العربية
Based on the principles of microwave circuit interferometry we have constructed a Reduced Noise Amplifier (RNA) with power spectral density of phase, as well as amplitude, fluctuations close to -170 dBc/Hz at 1 kHz offset. The RNA has been incorporated with a cryogenic sapphire resonator as a loop oscillator whose noise performance is governed by the Leesons model. Following this model and using the results of in-situ measurements of gain and phase fluctuations of the RNA we inferred noise properties of the oscillator. In particular, for a signal transmitted through the resonator we found that power spectral density of its phase/amplitude fluctuations must be close to -185 dBc/Hz at offsets above 300 Hz. We discuss a few approaches that will allow direct measurements of such low levels of noise.
Wavefront sensors are an important tool to characterize coherent beams of extreme ultraviolet radiation. However, conventional Hartmann-type sensors do not allow for independent wavefront characterization of different spectral components that may be
Precision frequency and phase synchronization between distinct fiber interconnected nodes is critical for a wide range of applications, including atomic timekeeping, quantum networking, database synchronization, ultra-high-capacity coherent optical c
Microwave cavities oscillating in the TM$_{110}$ mode can be used as dynamic electron-optical elements inside an electron microscope. By filling the cavity with a dielectric material it becomes more compact and power efficient, facilitating the imple
This note presents a method to tune the resonant frequency $f_{0}$ of a rectangular microwave cavity. This is achieved using a liquid metal, GaInSn, to decrease the volume of the cavity. It is possible to shift $f_{0}$ by filling the cavity with this
The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-ma