ترغب بنشر مسار تعليمي؟ اضغط هنا

A next-generation inverse-geometry spallation-driven ultracold neutron source

90   0   0.0 ( 0 )
 نشر من قبل Kent Leung
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physics model of a next-generation spallation-driven high-current ultracold neutron (UCN) source capable of delivering an extracted UCN rate of around an-order-of-magnitude higher than the strongest proposed sources, and around three-orders-of-magnitude higher than existing sources, is presented. This UCN-current-optimized source would dramatically improve cutting-edge UCN measurements that are currently statistically limited. A novel Inverse Geometry design is used with 40 L of superfluid $^4$He (He-II), which acts as a converter of cold neutrons (CNs) to UCNs, cooled with state-of-the-art sub-cooled cryogenic technology to $sim$1.6 K. Our design is optimized for a 100 W maximum heat load constraint on the He-II and its vessel. In our geometry, the spallation target is wrapped symmetrically around the UCN converter to permit raster scanning the proton beam over a relatively large volume of tungsten spallation target to reduce the demand on the cooling requirements, which makes it reasonable to assume that water edge-cooling only is sufficient. Our design is refined in several steps to reach $P_{UCN}=2.1times10^9,/$s under our other restriction of 1 MW maximum available proton beam power. We then study effects of the He-II scattering kernel as well as reductions in $P_{UCN}$ due to pressurization to reach $P_{UCN}=1.8times10^9,/$s. Finally, we provide a design for the UCN extraction system that takes into account the required He-II heat transport properties and implementation of a He-II containment foil that allows UCN transmission. We estimate a total useful UCN current from our source of $R_{use}=5times10^8,/$s from a 18 cm diameter guide 5 m from the source. Under a conservative no return approximation, this rate can produce an extracted density of $>1times10^4,/$cm$^3$ in $<$1000~L external experimental volumes with a $^{58}$Ni (335 neV) cut-off potential.



قيم البحث

اقرأ أيضاً

We report on our efforts to optimize the geometry of neutron moderators and converters for the TRIUMF UltraCold Advanced Neutron (TUCAN) source using MCNP simulations. It will use an existing spallation neutron source driven by a 19.3 kW proton beam delivered by TRIUMFs 520 MeV cyclotron. Spallation neutrons will be moderated in heavy water at room temperature and in liquid deuterium at 20 K, and then superthermally converted to ultracold neutrons in superfluid, isotopically purified $^4$He. The helium will be cooled by a $^3$He fridge through a $^3$He-$^4$He heat exchanger. The optimization took into account a range of engineering and safety requirements and guided the detailed design of the source. The predicted ultracold-neutron density delivered to a typical experiment is maximized for a production volume of 27 L, achieving a production rate of $1.4 cdot 10^7$ s$^{-1}$ to $1.6 cdot 10^7$ s$^{-1}$ with a heat load of 8.1 W. At that heat load, the fridge can cool the superfluid helium to 1.1 K, resulting in a storage lifetime for ultracold neutrons in the source of about 30 s. The most critical performance parameters are the choice of cold moderator and the volume, thickness, and material of the vessel containing the superfluid helium. The source is scheduled to be installed in 2021 and will enable the TUCAN collaboration to measure the electric dipole moment of the neutron with a sensitivity of $10^{-27}$ e cm.
85 - S. Ahmed 2019
A fast-switching, high-repetition-rate magnet and power supply have been developed for and operated at TRIUMF, to deliver a proton beam to the new ultracold neutron (UCN) facility. The facility possesses unique operational requirements: a time-averag ed beam current of 40~$mu$A with the ability to switch the beam on or off for several minutes. These requirements are in conflict with the typical operation mode of the TRIUMF cyclotron which delivers nearly continuous beam to multiple users. To enable the creation of the UCN facility, a beam-sharing arrangement with another facility was made. The beam sharing is accomplished by the fast-switching (kicker) magnet which is ramped in 50~$mu$s to a current of 193~A, held there for approximately 1~ms, then ramped down in the same short period of time. This achieves a 12~mrad deflection which is sufficient to switch the proton beam between the two facilities. The kicker magnet relies on a high-current, low-inductance coil connected to a fast-switching power supply that is based on insulated-gate bipolar transistors (IGBTs). The design and performance of the kicker magnet system and initial beam delivery results are reported.
The concept of a small-scale, pulsed-proton accelerator based compact ultracold neutron (UCN) source is presented. The essential idea of the compact UCN source is to enclose a volume of superfluid $^{4}mathrm{He}$ converter with a supercold moderator in the vicinity of a low-radiation neutron production target from (p, n) reactions. The supercold moderator should possess an ability to produce cold neutron flux with a peak brightness near the single-phonon excitation band of the superfluid $^{4}mathrm{He}$ converter, thereby augmenting the UCN production in the compact UCN source even with very low intensity of neutron brightness. The performance of the compact UCN source is studied in terms of the UCN production and thermal load in the UCN converter. With the proposed concept of the compact UCN source, a UCN production rate of $P_{mathrm{UCN}}=80mathrm{UCN}/mathrm{cc}/mathrm{sec}$ in the UCN converter could be obtained while maintaining thermal load of on the superfluid $^{4}mathrm{He}$ and its container at a level of $22mathrm{mW}$. This study shows that the compact UCN source can produce a high enough density of UCN at a small-scale, low-energy, pulsed-proton beam facility with reduced efforts on the cooling and radiation protection.
102 - M. Klausz 2020
The European Spallation Source (ESS) is intended to become the most powerful spallation neutron source in the world and the flagship of neutron science in the upcoming decades. The exceptionally high neutron flux will provide unique opportunities for scientific experiments, but also set high requirements for the detectors. One of the most challenging aspects is the rate capability and in particular the peak instantaneous rate capability, i.e. the number of neutrons hitting the detector per channel or cm$^2$ at the peak of the neutron pulse. The primary purpose of this paper is to estimate the incident rates that are anticipated for the BIFROST instrument planned for ESS, and also to demonstrate the use of powerful simulation tools for the correct interpretation of neutron transport in crystalline materials. A full simulation model of the instrument from source to detector position, implemented with the use of multiple simulation software packages is presented. For a single detector tube instantaneous incident rates with a maximum of 1.7 GHz for a Bragg peak from a single crystal, and 0.3 MHz for a vanadium sample are found. This paper also includes the first application of a new pyrolytic graphite model, and a comparison of different simulation tools to highlight their strengths and weaknesses.
84 - D. Akimov , J.B. Albert , P. An 2018
The primary goal of the COHERENT collaboration is to measure and study coherent elastic neutrino-nucleus scattering (CEvNS) using the high-power, few-tens-of-MeV, pulsed source of neutrinos provided by the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). The COHERENT collaboration reported the first detection of CEvNS [Akimov:2017ade] using a CsI[Na] detector. At present the collaboration is deploying four detector technologies: a CsI[Na] scintillating crystal, p-type point-contact germanium detectors, single-phase liquid argon, and NaI[Tl] crystals. All detectors are located in the neutron-quiet basement of the SNS target building at distances 20-30 m from the SNS neutrino source. The simultaneous measurement in all four COHERENT detector subsystems will test the $N^2$ dependence of the cross section and search for new physics. In addition, COHERENT is measuring neutrino-induced neutrons from charged- and neutral-current neutrino interactions on nuclei in shielding materials, which represent a non-negligible background for CEvNS as well as being of intrinsic interest. The Collaboration is planning as well to look for charged-current interactions of relevance to supernova and weak-interaction physics. This document describes concisely the COHERENT physics motivations, sensitivity, and next plans for measurements at the SNS to be accomplished on a few-year timescale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا