ﻻ يوجد ملخص باللغة العربية
Due to the significance and value in human-computer interaction and natural language processing, task-oriented dialog systems are attracting more and more attention in both academic and industrial communities. In this paper, we survey recent advances and challenges in task-oriented dialog systems. We also discuss three critical topics for task-oriented dialog systems: (1) improving data efficiency to facilitate dialog modeling in low-resource settings, (2) modeling multi-turn dynamics for dialog policy learning to achieve better task-completion performance, and (3) integrating domain ontology knowledge into the dialog model. Besides, we review the recent progresses in dialog evaluation and some widely-used corpora. We believe that this survey, though incomplete, can shed a light on future research in task-oriented dialog systems.
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembl
Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techn
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical mo
One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming