ﻻ يوجد ملخص باللغة العربية
Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techniques respectively. Similar to adversarial attack problems with computer vision models discussed in existing literature, these intent-slot tagging models are often over-sensitive to small variations in input -- predicting different and often incorrect labels when small changes are made to a query, thus reducing their accuracy and reliability. However, evaluating a models robustness to these changes is harder for language since words are discrete and an automated change (e.g. adding `noise) to a query sometimes changes the meaning and thus labels of a query. In this paper, we first describe how to create an adversarial test set to measure the robustness of these models. Furthermore, we introduce and adapt adversarial training methods as well as data augmentation using back-translation to mitigate these issues. Our experiments show that both techniques improve the robustness of the system substantially and can be combined to yield the best results.
Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembl
Traditionally, industry solutions for building a task-oriented dialog system have relied on helping dialog authors define rule-based dialog managers, represented as dialog flows. While dialog flows are intuitively interpretable and good for simple sc
This paper describes our submission for the End-to-end Multi-domain Task Completion Dialog shared task at the 9th Dialog System Technology Challenge (DSTC-9). Participants in the shared task build an end-to-end task completion dialog system which is
The recent success of large pre-trained language models such as BERT and GPT-2 has suggested the effectiveness of incorporating language priors in downstream dialog generation tasks. However, the performance of pre-trained models on the dialog task i
We present a new corpus for the Situated and Interactive Multimodal Conversations, SIMMC 2.0, aimed at building a successful multimodal assistant agent. Specifically, the dataset features 11K task-oriented dialogs (117K utterances) between a user and