ترغب بنشر مسار تعليمي؟ اضغط هنا

Semantically-Enriched Search Engine for Geoportals: A Case Study with ArcGIS Online

111   0   0.0 ( 0 )
 نشر من قبل Gengchen Mai
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many geoportals such as ArcGIS Online are established with the goal of improving geospatial data reusability and achieving intelligent knowledge discovery. However, according to previous research, most of the existing geoportals adopt Lucene-based techniques to achieve their core search functionality, which has a limited ability to capture the users search intentions. To better understand a users search intention, query expansion can be used to enrich the users query by adding semantically similar terms. In the context of geoportals and geographic information retrieval, we advocate the idea of semantically enriching a users query from both geospatial and thematic perspectives. In the geospatial aspect, we propose to enrich a query by using both place partonomy and distance decay. In terms of the thematic aspect, concept expansion and embedding-based document similarity are used to infer the implicit information hidden in a users query. This semantic query expansion 1 2 G. Mai et al. framework is implemented as a semantically-enriched search engine using ArcGIS Online as a case study. A benchmark dataset is constructed to evaluate the proposed framework. Our evaluation results show that the proposed semantic query expansion framework is very effective in capturing a users search intention and significantly outperforms a well-established baseline-Lucenes practical scoring function-with more than 3.0 increments in DCG@K (K=3,5,10).



قيم البحث

اقرأ أيضاً

Information overload is a prevalent challenge in many high-value domains. A prominent case in point is the explosion of the biomedical literature on COVID-19, which swelled to hundreds of thousands of papers in a matter of months. In general, biomedi cal literature expands by two papers every minute, totalling over a million new papers every year. Search in the biomedical realm, and many other vertical domains is challenging due to the scarcity of direct supervision from click logs. Self-supervised learning has emerged as a promising direction to overcome the annotation bottleneck. We propose a general approach for vertical search based on domain-specific pretraining and present a case study for the biomedical domain. Despite being substantially simpler and not using any relevance labels for training or development, our method performs comparably or better than the best systems in the official TREC-COVID evaluation, a COVID-related biomedical search competition. Using distributed computing in modern cloud infrastructure, our system can scale to tens of millions of articles on PubMed and has been deployed as Microsoft Biomedical Search, a new search experience for biomedical literature: https://aka.ms/biomedsearch.
Conversational information seeking (CIS) is playing an increasingly important role in connecting people to information. Due to the lack of suitable resource, previous studies on CIS are limited to the study of theoretical/conceptual frameworks, labor atory-based user studies, or a particular aspect of CIS (e.g., asking clarifying questions). In this work, we make efforts to facilitate research on CIS from three aspects. (1) We formulate a pipeline for CIS with six sub-tasks: intent detection (ID), keyphrase extraction (KE), action prediction (AP), query selection (QS), passage selection (PS), and response generation (RG). (2) We release a benchmark dataset, called wizard of search engine (WISE), which allows for comprehensive and in-depth research on all aspects of CIS. (3) We design a neural architecture capable of training and evaluating both jointly and separately on the six sub-tasks, and devise a pre-train/fine-tune learning scheme, that can reduce the requirements of WISE in scale by making full use of available data. We report some useful characteristics of CIS based on statistics of WISE. We also show that our best performing model variant isable to achieve effective CIS as indicated by several metrics. We release the dataset, the code, as well as the evaluation scripts to facilitate future research by measuring further improvements in this important research direction.
156 - Weizhen Qi , Yeyun Gong , Yu Yan 2020
In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree ( Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58% and 18.8% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.
Background: The web has become a primary information resource about illnesses and treatments for both medical and non-medical users. Standard web search is by far the most common interface for such information. It is therefore of interest to find out how well web search engines work for diagnostic queries and what factors contribute to successes and failures. Among diseases, rare (or orphan) diseases represent an especially challenging and thus interesting class to diagnose as each is rare, diverse in symptoms and usually has scattered resources associated with it. Methods: We use an evaluation approach for web search engines for rare disease diagnosis which includes 56 real life diagnostic cases, state-of-the-art evaluation measures, and curated information resources. In addition, we introduce FindZebra, a specialized (vertical) rare disease search engine. FindZebra is powered by open source search technology and uses curated freely available online medical information. Results: FindZebra outperforms Google Search in both default setup and customised to the resources used by FindZebra. We extend FindZebra with specialized functionalities exploiting medical ontological information and UMLS medical concepts to demonstrate different ways of displaying the retrieved results to medical experts. Conclusions: Our results indicate that a specialized search engine can improve the diagnostic quality without compromising the ease of use of the currently widely popular web search engines. The proposed evaluation approach can be valuable for future development and benchmarking. The FindZebra search engine is available at http://www.findzebra.com/.
Coronavirus disease (COVID-19) has been declared as a pandemic by WHO with thousands of cases being reported each day. Numerous scientific articles are being published on the disease raising the need for a service which can organize, and query them i n a reliable fashion. To support this cause we present AWS CORD-19 Search (ACS), a public, COVID-19 specific, neural search engine that is powered by several machine learning systems to support natural language based searches. ACS with capabilities such as document ranking, passage ranking, question answering and topic classification provides a scalable solution to COVID-19 researchers and policy makers in their search and discovery for answers to high priority scientific questions. We present a quantitative evaluation and qualitative analysis of the system against other leading COVID-19 search platforms. ACS is top performing across these systems yielding quality results which we detail with relevant examples in this work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا