ترغب بنشر مسار تعليمي؟ اضغط هنا

Wizard of Search Engine: Access to Information Through Conversations with Search Engines

128   0   0.0 ( 0 )
 نشر من قبل Pengjie Ren
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conversational information seeking (CIS) is playing an increasingly important role in connecting people to information. Due to the lack of suitable resource, previous studies on CIS are limited to the study of theoretical/conceptual frameworks, laboratory-based user studies, or a particular aspect of CIS (e.g., asking clarifying questions). In this work, we make efforts to facilitate research on CIS from three aspects. (1) We formulate a pipeline for CIS with six sub-tasks: intent detection (ID), keyphrase extraction (KE), action prediction (AP), query selection (QS), passage selection (PS), and response generation (RG). (2) We release a benchmark dataset, called wizard of search engine (WISE), which allows for comprehensive and in-depth research on all aspects of CIS. (3) We design a neural architecture capable of training and evaluating both jointly and separately on the six sub-tasks, and devise a pre-train/fine-tune learning scheme, that can reduce the requirements of WISE in scale by making full use of available data. We report some useful characteristics of CIS based on statistics of WISE. We also show that our best performing model variant isable to achieve effective CIS as indicated by several metrics. We release the dataset, the code, as well as the evaluation scripts to facilitate future research by measuring further improvements in this important research direction.



قيم البحث

اقرأ أيضاً

In this paper, we address the problem of answering complex information needs by conversing conversations with search engines, in the sense that users can express their queries in natural language, and directly receivethe information they need from a short system response in a conversational manner. Recently, there have been some attempts towards a similar goal, e.g., studies on Conversational Agents (CAs) and Conversational Search (CS). However, they either do not address complex information needs, or they are limited to the development of conceptual frameworks and/or laboratory-based user studies. We pursue two goals in this paper: (1) the creation of a suitable dataset, the Search as a Conversation (SaaC) dataset, for the development of pipelines for conversations with search engines, and (2) the development of astate-of-the-art pipeline for conversations with search engines, the Conversations with Search Engines (CaSE), using this dataset. SaaC is built based on a multi-turn conversational search dataset, where we further employ workers from a crowdsourcing platform to summarize each relevant passage into a short, conversational response. CaSE enhances the state-of-the-art by introducing a supporting token identification module and aprior-aware pointer generator, which enables us to generate more accurate responses. We carry out experiments to show that CaSE is able to outperform strong baselines. We also conduct extensive analyses on the SaaC dataset to show where there is room for further improvement beyond CaSE. Finally, we release the SaaC dataset and the code for CaSE and all models used for comparison to facilitate future research on this topic.
Many geoportals such as ArcGIS Online are established with the goal of improving geospatial data reusability and achieving intelligent knowledge discovery. However, according to previous research, most of the existing geoportals adopt Lucene-based te chniques to achieve their core search functionality, which has a limited ability to capture the users search intentions. To better understand a users search intention, query expansion can be used to enrich the users query by adding semantically similar terms. In the context of geoportals and geographic information retrieval, we advocate the idea of semantically enriching a users query from both geospatial and thematic perspectives. In the geospatial aspect, we propose to enrich a query by using both place partonomy and distance decay. In terms of the thematic aspect, concept expansion and embedding-based document similarity are used to infer the implicit information hidden in a users query. This semantic query expansion 1 2 G. Mai et al. framework is implemented as a semantically-enriched search engine using ArcGIS Online as a case study. A benchmark dataset is constructed to evaluate the proposed framework. Our evaluation results show that the proposed semantic query expansion framework is very effective in capturing a users search intention and significantly outperforms a well-established baseline-Lucenes practical scoring function-with more than 3.0 increments in DCG@K (K=3,5,10).
156 - Weizhen Qi , Yeyun Gong , Yu Yan 2020
In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree ( Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58% and 18.8% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.
Engineering a Web search engine offering effective and efficient information retrieval is a challenging task. This document presents our experiences from designing and developing a Web search engine offering a wide spectrum of functionalities and we report some interesting experimental results. A rather peculiar design choice of the engine is that its index is based on a DBMS, while some of the distinctive functionalities that are offered include advanced Greek language stemming, real time result clustering, and advanced link analysis techniques (also for spam page detection).
Caching search results is employed in information retrieval systems to expedite query processing and reduce back-end server workload. Motivated by the observation that queries belonging to different topics have different temporal-locality patterns, w e investigate a novel caching model called STD (Static-Topic-Dynamic cache). It improves traditional SDC (Static-Dynamic Cache) that stores in a static cache the results of popular queries and manages the dynamic cache with a replacement policy for intercepting the temporal variations in the query stream. Our proposed caching scheme includes another layer for topic-based caching, where the entries are allocated to different topics (e.g., weather, education). The results of queries characterized by a topic are kept in the fraction of the cache dedicated to it. This permits to adapt the cache-space utilization to the temporal locality of the various topics and reduces cache misses due to those queries that are neither sufficiently popular to be in the static portion nor requested within short-time intervals to be in the dynamic portion. We simulate different configurations for STD using two real-world query streams. Experiments demonstrate that our approach outperforms SDC with an increase up to 3% in terms of hit rates, and up to 36% of gap reduction w.r.t. SDC from the theoretical optimal caching algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا