ﻻ يوجد ملخص باللغة العربية
We investigate the possible occurrence of the highly-elongated shapes near the yrast line in $^{40}$Ca and $^{41}$Ca at high spins on the basis of the nuclear energy-density functional method. Not only the superdeformed (SD) yrast configuration but the yrare configurations on top of the SD band are described by solving the cranked Skyme-Kohn-Sham equation in the three-dimensional coordinate-space representation. It is suggested that some of the excited SD bands undergo band crossings and develop to the hyperdeformation (HD) beyond $J simeq 25 hbar$ in $^{40}$Ca. We find that the change of triaxiality in response to rotation plays a decisive role for the shape evolution towards HD, and that this is governed by the signature quantum number of the last occupied orbital at low spins. This mechanism can be verified in an experimental observation of the positive-parity SD yrast signature-partner bands in $^{41}$Ca, one of which ($alpha=+1/2$) undergoes crossings with the HD band while the other ($alpha=-1/2$) shows the smooth evolution from the collective rotation at low spins to the non-collective rotation with oblate shape at the termination.
For $^{48}$Ca, we determined $r_{m}$fm and $r_{rm skin}$fm from the central values of $sigma_{rm R}({rm EXP})$ of p+$^{48}$Ca scattering, using the chiral (Kyushu) $g$-matrix folding model with the GHFB+AMP densities. For $^{40}$Ca, Zenihiro {it et a
Superdeformed (SD) states in $^{40}$Ar have been studied using the deformed-basis antisymmetrized molecular dynamics. Low energy states were calculated by the parity and angular momentum projection (AMP) and the generator coordinate method (GCM). Bas
We present a consistent emph{ab initio} computation of the longitudinal response function $R_L$ in $^{40}$Ca using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-nucleon interactions. We vali
The superdeformed band, recently discovered in Ca-40 is analysed in an spherical shell model context. Two major oscillator shells, sd and pf are necessary to describe it. The yrast band of the fixed 8p-8h configuration fits extremely well with the ex
Anisotropic flows ($v_1$, $v_2$, $v_3$ and $v_4$) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon $^{40}$Ca + $^{40}$Ca at large impact parameters by Quantum Molecular Dynamics model. A phen