ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab initio computation of the longitudinal response function in $^{40}$Ca

136   0   0.0 ( 0 )
 نشر من قبل Joanna Sobczyk
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a consistent emph{ab initio} computation of the longitudinal response function $R_L$ in $^{40}$Ca using the coupled-cluster and Lorentz integral transform methods starting from chiral nucleon-nucleon and three-nucleon interactions. We validate our approach by comparing our results for $R_L$ in $^4$He and the Coulomb sum rule in $^{40}$Ca against experimental data and other calculations. For $R_L$ in $^{40}$Ca we obtain a very good agreement with experiment in the quasi-elastic peak up to intermediate momentum transfers, and we find that final state interactions are essential for an accurate description of the data. This work presents a milestone towards emph{ab initio} computations of neutrino-nucleus cross sections relevant for experimental long-baseline neutrino programs.



قيم البحث

اقرأ أيضاً

126 - J. M. Yao , B. Bally , J. Engel 2019
Working with Hamiltonians from chiral effective field theory, we develop a novel framework for describing arbitrary deformed medium-mass nuclei by combining the in-medium similarity renormalization group with the generator coordinate method. The appr oach leverages the ability of the first method to capture dynamic correlations and the second to include collective correlations without violating symmetries. We use our scheme to compute the matrix element that governs the neutrinoless double beta decay of $^{48}$Ca to $^{48}$Ti, and find it to have the value $0.61$, near or below the predictions of most phenomenological methods. The result opens the door to ab initio calculations of the matrix elements for the decay of heavier nuclei such as $^{76}$Ge, $^{130}$Te, and $^{136}$Xe.
In a recent Letter [Phys. Rev. Lett. 99, 092501 (2007)], Roth and Navratil present an importance-truncation scheme for the no-core shell model. The authors claim that their truncation scheme leads to converged results for the ground state of 40-Ca. W e believe that this conclusion cannot be drawn from the results presented in the Letter. Furthermore, the claimed convergence is at variance with expectations of many-body theory. In particular, coupled-cluster calculations indicate that a significant fraction of the correlation energy is missing.
We present the first ab initio calculations for open-shell nuclei past the tin isotopic line, focusing on Xe isotopes as well as doubly-magic Sn isotopes. We show that, even for moderately hard interactions, it is possible to obtain meaningful predic tions and that the NNLOsat chiral interaction predicts radii and charge density distributions close to the experiment. We then make a new prediction for ${}^{100}$Sn. This paves the way for ab initio studies of exotic charge density distributions at the limit of the present ab initio mass domain, where experimental data is becoming available. The present study closes the gap between the largest isotopes reachable by ab initio methods and the smallest exotic nuclei accessible to electron scattering experiments.
We compute the binding energy of neutron-rich oxygen isotopes and employ the coupled-cluster method and chiral nucleon-nucleon interactions at next-to-next-to-next-to-leading order with two different cutoffs. We obtain rather well-converged results i n model spaces consisting of up to 21 oscillator shells. For interactions with a momentum cutoff of 500 MeV, we find that 28O is stable with respect to 24O, while calculations with a momentum cutoff of 600 MeV result in a slightly unbound 28O. The theoretical error estimates due to the omission of the three-nucleon forces and the truncation of excitations beyond three-particle-three-hole clusters indicate that the stability of 28O cannot be ruled out from ab-initio calculations, and that three-nucleon forces and continuum effects play the dominant role in deciding this question.
174 - R. Roth , P. Navratil 2008
We respond to Comment on our recent letter (Phys.Rev.Lett.99:092501,2007) by Dean et al (arXiv:0709.0449).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا