ترغب بنشر مسار تعليمي؟ اضغط هنا

Stickelberger annihilators of logarithmic class groups

140   0   0.0 ( 0 )
 نشر من قبل Jean-Francois Jaulent
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For any odd prime number $ell$ and any abelian number field F containing the $ell$-th roots of unity, we show that the Stickelberger ideal annihilates the imaginary component of the $ell$-group of logarithmic classes and that its reflection annihilates the real componen of the Bertrandias-Payan module. As a consequence we obtain a very simple proof of annihilation results for the so-called wild {e}tale $ell$-kernels of F .



قيم البحث

اقرأ أيضاً

Building on Boscas method, we extend to tame ray class groups the results on capitulation of ideals of a number field by composition with abelian extensions of a subfield first studied by Gras. More precisely, for every extension of number fields K/k , where at least one infinite place splits completely, and every squarefree divisor m of K, we prove that there exist infinitely many abelian extensions F/k such that the ray class group mod m of K capitulates in KF. As a consequence we generalize to tame ray class groups the results of Kurihara on triviality of class groups for maximal abelian pro-extensions of totally real number fields.
135 - Yuri Bilu , Jean Gillibert 2016
We prove, under some mild hypothesis, that an etale cover of curves defined over a number field has infinitely many specializations into an everywhere unramified extension of number fields. This constitutes an absolute version of the Chevalley-Weil t heorem. Using this result, we are able to generalize the techniques of Mestre, Levin and the second author for constructing and counting number fields with large class group.
We prove a general stability theorem for $p$-class groups of number fields along relative cyclic extensions of degree $p^2$, which is a generalization of a finite-extension version of Fukudas theorem by Li, Ouyang, Xu and Zhang. As an application, we give an example of pseudo-null Iwasawa module over a certain $2$-adic Lie extension.
84 - Farshid Hajir 2021
Let $p$ be a prime. We define the deficiency of a finitely-generated pro-$p$ group $G$ to be $r(G)-d(G)$ where $d(G)$ is the minimal number of generators of $G$ and $r(G)$ is its minimal number of relations. For a number field $K$, let $K_emptyset$ b e the maximal unramified $p$-extension of $K$, with Galois group $G_emptyset = Gal(K_emptyset/K)$. In the 1960s, Shafarevich (and independently Koch) showed that the deficiency of $G_emptyset$ satisfies $$0leq mathrm{Def}({rm G}_emptyset) leq dim (O_K^times/(O_K^{times })^p),$$ relating the deficiency of $G_emptyset$ to the $p$-rank of the unit group $O_K^times$ of the ring of integers $O_K$ of $K$. In this work, we further explore connections between relations of the group $G_emptyset$ and the units in the tower $K_emptyset/K$, especially their Galois module structure. In particular, under the assumption that $K$ does not contain a primitive $p$th root of unity, we give an exact formula for $mathrm{Def}({rm G}_emptyset)$ in terms of the number of independent Minkowski units in the tower. The method also allows us to infer more information about the relations of G$_emptyset$, such as their depth in the Zassenhaus filtration, which in certain circumstances makes it easier to show that G$_emptyset$ is infinite. We illustrate how the techniques can be used to provide evidence for the expectation that the Shafarevich-Koch upper bound is almost always sharp.
72 - Daniel C. Mayer 2020
For each odd prime p>=5, there exist finite p-groups G with derived quotient G/D(G)=C(p)xC(p) and nearly constant transfer kernel type k(G)=(1,2,...,2) having two fixed points. It is proved that, for p=7, this type k(G) with the simplest possible cas e of logarithmic abelian quotient invariants t(G)=(11111,111,21,21,21,21,21,21) of the eight maximal subgroups is realized by exactly 98 non-metabelian Schur sigma-groups S of order 7^11 with fixed derived length dl(S)=3 and metabelianizations S/D(D(S)) of order 7^7. For p=5, the type k(G) with t(G)=(2111,111,21,21,21,21) leads to infinitely many non-metabelian Schur sigma-groups S of order at least 5^14 with unbounded derived length dl(S)>=3 and metabelianizations S/D(D(S)) of fixed order 5^7. These results admit the conclusion that d=-159592 is the first known discriminant of an imaginary quadratic field with 7-class field tower of precise length L=3, and d=-90868 is a discriminant of an imaginary quadratic field with 5-class field tower of length L>=3, whose exact length remains unknown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا