ﻻ يوجد ملخص باللغة العربية
For high-dimensional small sample size data, Hotellings T2 test is not applicable for testing mean vectors due to the singularity problem in the sample covariance matrix. To overcome the problem, there are three main approaches in the literature. Note, however, that each of the existing approaches may have serious limitations and only works well in certain situations. Inspired by this, we propose a pairwise Hotelling method for testing high-dimensional mean vectors, which, in essence, provides a good balance between the existing approaches. To effectively utilize the correlation information, we construct the new test statistics as the summation of Hotellings test statistics for the covariate pairs with strong correlations and the squared $t$ statistics for the individual covariates that have little correlation with others. We further derive the asymptotic null distributions and power functions for the proposed Hotelling tests under some regularity conditions. Numerical results show that our new tests are able to control the type I error rates, and can achieve a higher statistical power compared to existing methods, especially when the covariates are highly correlated. Two real data examples are also analyzed and they both demonstrate the efficacy of our pairwise Hotelling tests.
We propose a likelihood ratio test framework for testing normal mean vectors in high-dimensional data under two common scenarios: the one-sample test and the two-sample test with equal covariance matrices. We derive the test statistics under the assu
Testing heteroscedasticity of the errors is a major challenge in high-dimensional regressions where the number of covariates is large compared to the sample size. Traditional procedures such as the White and the Breusch-Pagan tests typically suffer f
In this paper new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for th
By studying the family of $p$-dimensional scale mixtures, this paper shows for the first time a non trivial example where the eigenvalue distribution of the corresponding sample covariance matrix {em does not converge} to the celebrated Marv{c}enko-P
For a multivariate linear model, Wilks likelihood ratio test (LRT) constitutes one of the cornerstone tools. However, the computation of its quantiles under the null or the alternative requires complex analytic approximations and more importantly, th