ﻻ يوجد ملخص باللغة العربية
Multitriangulations, and more generally subword complexes, yield a large family of simplicial complexes that are homeomorphic to spheres. Until now, all attempts to prove or disprove that they can be realized as convex polytopes faced major obstacles. In this article, we lay out the foundations of a framework -- built upon notions from algebraic combinatorics and discrete geometry -- that allows a deeper understanding of geometric realizations of subword complexes of Coxeter groups. Namely, we describe explicitly a family of chirotopes that encapsulate the necessary information to obtain geometric realizations of subword complexes. Further, we show that the space of geometric realizations of this family covers that of subword complexes, making this combinatorially defined family into a natural object to study. The family of chirotopes is described through certain parameter matrices. That is, given a finite Coxeter group, we present matrices where certain minors have prescribed signs. Parameter matrices are universal: The existence of these matrices combined with conditions in terms of Schur functions is equivalent to the realizability of all subword complexes of this Coxeter group as chirotopes. Finally, parameter matrices provide extensions of combinatorial identities; for instance, the Vandermonde determinant and the dual Cauchy identity are recovered through suitable choices of parameters.
We give explicit necessary and sufficient conditions for the abstract commensurability of certain families of 1-ended, hyperbolic groups, namely right-angled Coxeter groups defined by generalized theta-graphs and cycles of generalized theta-graphs, a
We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra indu
We study global fixed points for actions of Coxeter groups on nonpositively curved singular spaces. In particular, we consider property FA_n, an analogue of Serres property FA for actions on CAT(0) complexes. Property FA_n has implications for irredu
Suppose a residually finite group $G$ acts cocompactly on a contractible complex with strict fundamental domain $Q$, where the stabilizers are either trivial or have normal $mathbb{Z}$-subgroups. Let $partial Q$ be the subcomplex of $Q$ with nontrivi
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combi