ﻻ يوجد ملخص باللغة العربية
We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on $c$-clusters in the theory of cluster algebras.
Let $p$ be an odd prime number and $K$ a number field having a primitive $p$-th root of unity $zeta.$ We prove that Nikshychs non-group theoretical Hopf algebra $H_p$, which is defined over $mathbb{Q}(zeta)$, admits a Hopf order over the ring of inte
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combi
A non-commutative, planar, Hopf algebra of rooted trees was proposed in L. Foissy, Bull. Sci. Math. 126 (2002) 193-239. In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a qua
Multitriangulations, and more generally subword complexes, yield a large family of simplicial complexes that are homeomorphic to spheres. Until now, all attempts to prove or disprove that they can be realized as convex polytopes faced major obstacles
In this paper, we define a Hopf algebra structure on the vector space spanned by packed words using a selection-quotient coproduct. We show that this algebra is free on its irreducible packed words. Finally, we give some brief explanations on the Maple codes we have used.