ﻻ يوجد ملخص باللغة العربية
A large body of research shows that using interactive engagement pedagogy in the introductory physics classroom consistently results in significant student learning gains; however, with a few exceptions, those learning gains tend not to be accompanied by more expertlike attitudes and beliefs about physics and learning physics. In fact, in both traditionally taught and active learning classroom environments, students often become more novicelike in their attitudes and beliefs following a semester of instruction. Further, prior to instruction, men typically score higher than women on conceptual inventories, such as the Force Concept Inventory (FCI), and more expertlike on attitudinal surveys, such as the Colorado Learning Attitudes about Science Survey (CLASS), and those gender gaps generally persist following instruction. In this paper, we analyze three years of pre-post matched data for physics majors at Virginia Tech on the FCI and the CLASS. The courses were taught using a blended pedagogical model of peer instruction, group problem solving, and direct instruction, along with an explicit focus on the importance of conceptual understanding and a growth mindset. We found that the FCI gender gap decreased, and both men and women showed positive, expertlike shifts on the CLASS. Perhaps most surprisingly, we found a meaningful correlation between a students post- CLASS score and normalized FCI gain for women, but not for men.
English Language Learners (ELLs) are frequently left on the periphery of classroom interactions. Due to misalignment of language skills, teachers and peers communicate with these students less often, decreasing the number of opportunities to engage.
Evidence is presented that offering introductory physics courses with an explicit focus on mastery can reduce the gender gap to zero. Taken together with a previous study showing that a concepts-first course may zero out another demographic gap leads
Initiatives to increase the number, persistence, and success of women in physics in the US reach pre-teen girls through senior women. Programs exist at both the local and national levels. In addition, researchers have investigated issues related to g
Most STEM students experience the introductory physics sequence in large-enrollment (N $gtrsim$ 100 students) classrooms, led by one lecturer and supported by a few teaching assistants. This work describes methods and principles we used to create an
It is a well-studied notion that women are under-represented in the physical sciences, with a leaky pipeline metaphor describing how the number of women decreases at higher levels in academia[1,2]. It is unclear, however, where the major leaks exist