ﻻ يوجد ملخص باللغة العربية
The calibration of noise for a privacy-preserving mechanism depends on the sensitivity of the query and the prescribed privacy level. A data steward must make the non-trivial choice of a privacy level that balances the requirements of users and the monetary constraints of the business entity. We analyse roles of the sources of randomness, namely the explicit randomness induced by the noise distribution and the implicit randomness induced by the data-generation distribution, that are involved in the design of a privacy-preserving mechanism. The finer analysis enables us to provide stronger privacy guarantees with quantifiable risks. Thus, we propose privacy at risk that is a probabilistic calibration of privacy-preserving mechanisms. We provide a composition theorem that leverages privacy at risk. We instantiate the probabilistic calibration for the Laplace mechanism by providing analytical results. We also propose a cost model that bridges the gap between the privacy level and the compensation budget estimated by a GDPR compliant business entity. The convexity of the proposed cost model leads to a unique fine-tuning of privacy level that minimises the compensation budget. We show its effectiveness by illustrating a realistic scenario that avoids overestimation of the compensation budget by using privacy at risk for the Laplace mechanism. We quantitatively show that composition using the cost optimal privacy at risk provides stronger privacy guarantee than the classical advanced composition.
Machine learning (ML) models trained on personal data have been shown to leak information about users. Differential privacy (DP) enables model training with a guaranteed bound on this leakage. Each new model trained with DP increases the bound on dat
The massive collection of personal data by personalization systems has rendered the preservation of privacy of individuals more and more difficult. Most of the proposed approaches to preserve privacy in personalization systems usually address this is
Many data applications have certain invariant constraints due to practical needs. Data curators who employ differential privacy need to respect such constraints on the sanitized data product as a primary utility requirement. Invariants challenge the
In this paper, we study the problem of privacy-preserving data sharing, wherein only a subset of the records in a database are sensitive, possibly based on predefined privacy policies. Existing solutions, viz, differential privacy (DP), are over-pess
In this rejoinder, we aim to address two broad issues that cover most comments made in the discussion. First, we discuss some theoretical aspects of our work and comment on how this work might impact the theoretical foundation of privacy-preserving d