ﻻ يوجد ملخص باللغة العربية
In this rejoinder, we aim to address two broad issues that cover most comments made in the discussion. First, we discuss some theoretical aspects of our work and comment on how this work might impact the theoretical foundation of privacy-preserving data analysis. Taking a practical viewpoint, we next discuss how f-differential privacy (f-DP) and Gaussian differential privacy (GDP) can make a difference in a range of applications.
The wide deployment of machine learning in recent years gives rise to a great demand for large-scale and high-dimensional data, for which the privacy raises serious concern. Differential privacy (DP) mechanisms are conventionally developed for scalar
We develop two notions of instance optimality in differential privacy, inspired by classical statistical theory: one by defining a local minimax risk and the other by considering unbiased mechanisms and analogizing the Cramer-Rao bound, and we show t
We address the problem of how to obfuscate texts by removing stylistic clues which can identify authorship, whilst preserving (as much as possible) the content of the text. In this paper we combine ideas from generalised differential privacy and mach
Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to
In this paper, we consider the framework of privacy amplification via iteration, which is originally proposed by Feldman et al. and subsequently simplified by Asoodeh et al. in their analysis via the contraction coefficient. This line of work focuses