ﻻ يوجد ملخص باللغة العربية
In this work we consider black holes surrounded by anisotropic fluids in four dimensions. We first study the causal structure of these solutions showing some similarities and differences with Reissner-Nordstrom-de Sitter black holes. In addition, we consider scalar perturbations on this background geometry and compute the corresponding quasinormal modes. Moreover, we discuss the late-time behavior of the perturbations finding an interesting new feature, i.e., the presence of a subdominant power-law tail term. Likewise, we compute the Bekenstein entropy bound and the first semiclassical correction to the black hole entropy using the brick wall method, showing their universality. Finally, we also discuss the thermodynamical stability of the model.
Black holes found in binaries move at very high velocities relative to our own reference frame and can accelerate due to the emission of gravitational radiation. Here, we investigate the numerical stability and late-time behavior of linear scalar per
In this paper we analyze the propagation of a charged scalar field in a Reissner-Nordstrom black hole endowed with one anisotropic fluid that can play the role of a cosmological term for certain set of parameters. The evolution of a scalar wave scatt
We analyze spherical and odd-parity linear perturbations of hairy black holes with a minimally coupled scalar field.
The stability of black holes and solitons in d-dimensional Anti-de Sitter space-time against scalar field condensation is discussed. The resulting solutions are hairy black holes and solitons, respectively. In particular, we will discuss static black
Critical gravity is a quadratic curvature gravity in four dimensions which is ghost-free around the AdS background. Constructing a Vaidya-type exact solution, we show that the area of a black hole defined by a future outer trapping horizon can shrink