ﻻ يوجد ملخص باللغة العربية
Critical gravity is a quadratic curvature gravity in four dimensions which is ghost-free around the AdS background. Constructing a Vaidya-type exact solution, we show that the area of a black hole defined by a future outer trapping horizon can shrink by injecting a charged null fluid with positive energy density, so that a black hole is no more a one-way membrane even under the null energy condition. In addition, the solution shows that the Wald-Kodama dynamical entropy of a black hole is negative and can decrease. These properties expose the pathological aspects of critical gravity at the non-perturbative level.
In this work, we consider that in energy scales greater than the Planck energy, the geometry, fundamental physical constants, as charge, mass, speed of light and Newtonian constant of gravitation, and matter fields will depend on the scale. This type
We analyse the classical configurations of a bootstrapped Newtonian potential generated by homogeneous spherically symmetric sources in terms of a quantum coherent state. We first compute how the mass and mean wavelength of these solutions scale in t
We systematically study the field equations of $f(mathbb Q)$ gravity for spherically symmetric and stationary metric-affine spacetimes. Such spacetimes are described by a metric as well as a flat and torsionless affine connection. In the Symmetric Te
The role of torsion in quantum three-dimensional gravity is investigated by studying the partition function of the Euclidean theory in Riemann-Cartan spacetime. The entropy of the black hole with torsion is found to differ from the standard Bekenstei
We study topological black hole solutions of the simplest quadratic gravity action and we find that two classes are allowed. The first is asymptotically flat and mimics the Reissner-Nordstrom solution, while the second is asymptotically de Sitter or