ﻻ يوجد ملخص باللغة العربية
In this paper, we develop RCC, the first unified and comprehensive RDMA-enabled distributed transaction processing framework supporting six serializable concurrency control protocols: not only the classical protocols NOWAIT, WAITDIE, and OCC, but also more advanced MVCC and SUNDIAL, and even CALVIN, the deterministic concurrency control protocol. Our goal is to unbiasedly compare the protocols in a common execution environment with the concurrency control protocol being the only changeable component. We focus on the correct and efficient implementation using key techniques, such as co-routines, outstanding requests, and doorbell batching, with two-sided and one-sided communication primitives. Based on RCC, we get the deep insights that cannot be obtained by any existing systems. Most importantly, we obtain the execution stage latency breakdowns with one-sided and two-sided primitive for each protocol, which are analyzed to develop more efficient hybrid implementations. Our results show that three hybrid designs are indeed better than both one-sided and two-sided implementations by up to 17.8%. We believe that RCC is a significant advance over the state-of-the-art; it can both provide performance insights and be used as the common infrastructure for fast prototyping new implementations.
The rigid MPI programming model and batch scheduling dominate high-performance computing. While clouds brought new levels of elasticity into the world of computing, supercomputers still suffer from low resource utilization rates. To enhance supercomp
The sixth generation (6G) network must provide performance superior to previous generations in order to meet the requirements of emerging services and applications, such as multi-gigabit transmission rate, even higher reliability, sub 1 millisecond l
Blockchain protocols differ in fundamental ways, including the mechanics of selecting users to produce blocks (e.g., proof-of-work vs. proof-of-stake) and the method to establish consensus (e.g., longest chain rules vs. Byzantine fault-tolerant (BFT)
Finding or monitoring subgraph instances that are isomorphic to a given pattern graph in a data graph is a fundamental query operation in many graph analytic applications, such as network motif mining and fraud detection. The state-of-the-art distrib
This paper presents yet another concurrency control analysis platform, CCBench. CCBench supports seven protocols (Silo, TicToc, MOCC, Cicada, SI, SI with latch-free SSN, 2PL) and seven versatile optimization methods and enables the configuration of s