ﻻ يوجد ملخص باللغة العربية
Low rank matrix recovery problems appear widely in statistics, combinatorics, and imaging. One celebrated method for solving these problems is to formulate and solve a semidefinite program (SDP). It is often known that the exact solution to the SDP with perfect data recovers the solution to the original low rank matrix recovery problem. It is more challenging to show that an approximate solution to the SDP formulated with noisy problem data acceptably solves the original problem; arguments are usually ad hoc for each problem setting, and can be complex. In this note, we identify a set of conditions that we call simplicity that limit the error due to noisy problem data or incomplete convergence. In this sense, simple SDPs are robust: simple SDPs can be (approximately) solved efficiently at scale; and the resulting approximate solutions, even with noisy data, can be trusted. Moreover, we show that simplicity holds generically, and also for many structured low rank matrix recovery problems, including the stochastic block model, $mathbb{Z}_2$ synchronization, and matrix completion. Formally, we call an SDP simple if it has a surjective constraint map, admits a unique primal and dual solution pair, and satisfies strong duality and strict complementarity. However, simplicity is not a panacea: we show the Burer-Monteiro formulation of the SDP may have spurious second-order critical points, even for a simple SDP with a rank 1 solution.
We propose an algorithm for solving nonlinear convex programs defined in terms of a symmetric positive semidefinite matrix variable $X$. This algorithm rests on the factorization $X=Y Y^T$, where the number of columns of Y fixes the rank of $X$. It i
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimiz
In this paper, we investigate the generalized low rank approximation to the symmetric positive semidefinite matrix in the Frobenius norm: $$underset{ rank(X)leq k}{min} sum^m_{i=1}left Vert A_i - B_i XB_i^T right Vert^2_F,$$ where $X$ is an unknown s
A bilevel program is an optimization problem whose constraints involve another optimization problem. This paper studies bilevel polynomial programs (BPPs), i.e., all the functions are polynomials. We reformulate BPPs equivalently as semi-infinite pol
The robustness of a neural network to adversarial examples can be provably certified by solving a convex relaxation. If the relaxation is loose, however, then the resulting certificate can be too conservative to be practically useful. Recently, a les