ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate the generalized low rank approximation to the symmetric positive semidefinite matrix in the Frobenius norm: $$underset{ rank(X)leq k}{min} sum^m_{i=1}left Vert A_i - B_i XB_i^T right Vert^2_F,$$ where $X$ is an unknown symmetric positive semidefinite matrix and $k$ is a positive integer. We firstly use the property of a symmetric positive semidefinite matrix $X=YY^T$, $Y$ with order $ntimes k$, to convert the generalized low rank approximation into unconstraint generalized optimization problem. Then we apply the nonlinear conjugate gradient method to solve the generalized optimization problem. We give a numerical example to illustrate the numerical algorithm is feasible.
We propose an algorithm for solving nonlinear convex programs defined in terms of a symmetric positive semidefinite matrix variable $X$. This algorithm rests on the factorization $X=Y Y^T$, where the number of columns of Y fixes the rank of $X$. It i
In this paper, we show that the bundle method can be applied to solve semidefinite programming problems with a low rank solution without ever constructing a full matrix. To accomplish this, we use recent results from randomly sketching matrix optimiz
Low rank matrix recovery problems appear widely in statistics, combinatorics, and imaging. One celebrated method for solving these problems is to formulate and solve a semidefinite program (SDP). It is often known that the exact solution to the SDP w
We provide a number of algorithmic results for the following family of problems: For a given binary mtimes n matrix A and integer k, decide whether there is a simple binary matrix B which differs from A in at most k entries. For an integer r, the sim
The goal of this work is to fill a gap in [Yang, SIAM J. Matrix Anal. Appl, 41 (2020), 1797--1825]. In that work, an approximation procedure was proposed for orthogonal low-rank tensor approximation; however, the approximation lower bound was only es