ﻻ يوجد ملخص باللغة العربية
Let X, Y be asymmetric normed spaces and Lc(X, Y) the convex cone of all linear continuous operators from X to Y. It is known that in general, Lc(X, Y) is not a vector space. The aim of this note is to prove, using the Baire category theorem, that if Lc(X, Y) is a vector space for some asymmetric normed space Y , then X is isomorphic to its associated normed space (the converse is true for every asymmetric normed space Y and is easy to establish). For this, we introduce an index of symmetry of the space X denoted c(X) $in$ [0, 1] and we give the link between the index c(X) and the fact that Lc(X, Y) is in turn an asymmetric normed space for every asymmetric normed space Y. Our study leads to a topological classification of asymmetric normed spaces.
We modify the very well known theory of normed spaces $(E, orm)$ within functional analysis by considering a sequence $( orm_n : ninN)$ of norms, where $ orm_n$ is defined on the product space $E^n$ for each $ninN$. Our theory is analogous to, but
For every $alpha<omega_1$ we establish the existence of a separable Banach space whose Szlenk index is $omega^{alphaomega+1}$ and which is universal for all separable Banach spaces whose Szlenk-index does not exceed $omega^{alphaomega}$. In order to
The aim of this note is to study existence and main properties of direct and inverse limits in the category of normed $L^0$-modules (in the sense of Gigli) over a metric measure space.
We show that a Banach space with numerical index one cannot enjoy good convexity or smoothness properties unless it is one-dimensional. For instance, it has no WLUR points in its unit ball, its norm is not Frechet smooth and its dual norm is neither
If alpha and beta are countable ordinals such that beta eq 0, denote by tilde{T}_{alpha,beta} the completion of $c_{00}$ with respect to the implicitly defined norm ||x|| = max{||x||_{c_{0}}, 1/2 sup sum_{i=1}^{j}||E_{i}x||}, where the supremum is t