ﻻ يوجد ملخص باللغة العربية
We modify the very well known theory of normed spaces $(E, orm)$ within functional analysis by considering a sequence $( orm_n : ninN)$ of norms, where $ orm_n$ is defined on the product space $E^n$ for each $ninN$. Our theory is analogous to, but distinct from, an existing theory of `operator spaces; it is designed to relate to general spaces $L^p$ for $pin [1,infty]$, and in particular to $L^1$-spaces, rather than to $L^2$-spaces. After recalling in Chapter 1 some results in functional analysis, especially in Banach space, Hilbert space, Banach algebra, and Banach lattice theory that we shall use, we shall present in Chapter 2 our axiomatic definition of a `multi-normed space $((E^n, orm_n) : nin N)$, where $(E, orm)$ is a normed space. Several different, equivalent, characterizations of multi-normed spaces are given, some involving the theory of tensor products; key examples of multi-norms are the minimum and maximum multi-norm based on a given space. Multi-norms measure `geometrical features of normed spaces, in particular by considering their `rate of growth. There is a strong connection between multi-normed spaces and the theory of absolutely summing operators. A substantial number of examples of multi-norms will be presented. Following the pattern of standard presentations of the foundations of functional analysis, we consider generalizations to `multi-topological linear spaces through `multi-null sequences, and to `multi-bounded linear operators, which are exactly the `multi-continuous operators. We define a new Banach space ${mathcal M}(E,F)$ of multi-bounded operators, and show that it generalizes well-known spaces, especially in the theory of Banach lattices. We conclude with a theory of `orthogonal decompositions of a normed space with respect to a multi-norm, and apply this to construct a `multi-dual space.
Let X, Y be asymmetric normed spaces and Lc(X, Y) the convex cone of all linear continuous operators from X to Y. It is known that in general, Lc(X, Y) is not a vector space. The aim of this note is to prove, using the Baire category theorem, that if
The aim of this note is to study existence and main properties of direct and inverse limits in the category of normed $L^0$-modules (in the sense of Gigli) over a metric measure space.
We develop a combinatorial rigidity theory for symmetric bar-joint frameworks in a general finite dimensional normed space. In the case of rotational symmetry, matroidal Maxwell-type sparsity counts are identified for a large class of $d$-dimensional
The concept of fuzzy soft set was introduced for the first time by Maji et al. in 2002, and was considered sharply from applicable aspects to theoretical aspects by a wide range of researchers. In this paper the concept of fuzzy soft norm over fuzzy
This paper investigates optimal error bounds and convergence rates for general Mann iterations for computing fixed-points of non-expansive maps in normed spaces. We look for iterations that achieve the smallest fixed-point residual after $n$ steps, b