ترغب بنشر مسار تعليمي؟ اضغط هنا

$lambda$-Differential operators and $lambda$-differential modules for the Virasoro algebra

96   0   0.0 ( 0 )
 نشر من قبل Li Guo
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of $lambda$-differential operators is a natural generalization of differential operators and difference operators. In this paper, we determine the $lambda$-differential Lie algebraic structure on the Witt algebra and the Virasoro algebra for invertible $lambda$. Then we consider several families of modules over the Virasoro algebra with explicit module actions and determine the $lambda$-differential module structures on them.



قيم البحث

اقرأ أيضاً

213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$ . We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
We set up a framework for discussing `$q$-analogues of the usual covariant differential operators for hermitian symmetric spaces. This turns out to be directly related to the deformation quantization associated to quadratic algebras satisfying certain conditions introduced by Procesi and De Concini.
67 - Hongyan Guo 2020
We first determine the automorphism group of the twisted Heisenberg-Virasoro vertex operator algebra $V_{mathcal{L}}(ell_{123},0)$.Then, for any integer $t>1$, we introduce a new Lie algebra $mathcal{L}_{t}$, and show that $sigma_{t}$-twisted $V_{mat hcal{L}}(ell_{123},0)$($ell_{2}=0$)-modules are in one-to-one correspondence with restricted $mathcal{L}_{t}$-modules of level $ell_{13}$, where $sigma_{t}$ is an order $t$ automorphism of $V_{mathcal{L}}(ell_{123},0)$. At the end, we give a complete list of irreducible $sigma_{t}$-twisted $V_{mathcal{L}}(ell_{123},0)$($ell_{2}=0$)-modules.
Every irreducible finite-dimensional representation of the quantized enveloping algebra U_q(gl_n) can be extended to the corresponding quantum affine algebra via the evaluation homomorphism. We give in explicit form the necessary and sufficient condi tions for irreducibility of tensor products of such evaluation modules.
We introduce the notion of a multiplicative Poisson $lambda$-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson $lambda$-bracket plays in the theory of Hamiltonian PDE. We classify m ultiplicative Poisson $lambda$-brackets in one difference variable up to order 5. Applying the Lenard-Magri scheme to a compatible pair of multiplicative Poisson $lambda$-brackets of order 1 and 2, we establish integrability of some differential-difference equations, generalizing the Volterra chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا