ﻻ يوجد ملخص باللغة العربية
We introduce the notion of a multiplicative Poisson $lambda$-bracket, which plays the same role in the theory of Hamiltonian differential-difference equations as the usual Poisson $lambda$-bracket plays in the theory of Hamiltonian PDE. We classify multiplicative Poisson $lambda$-brackets in one difference variable up to order 5. Applying the Lenard-Magri scheme to a compatible pair of multiplicative Poisson $lambda$-brackets of order 1 and 2, we establish integrability of some differential-difference equations, generalizing the Volterra chain.
We develop the notions of multiplicative Lie conformal and Poisson vertex algebras, local and non-local, and their connections to the theory of integrable differential-difference Hamiltonian equations. We establish relations of these notions to $q$-d
We introduce new invariants associated to collections of compact subsets of a symplectic manifold. They are defined through an elementary-looking variational problem involving Poisson brackets. The proof of the non-triviality of these invariants invo
We discuss how the integrators used for the Hybrid Monte Carlo (HMC) algorithm not only approximately conserve some Hamiltonian $H$ but exactly conserve a nearby shadow Hamiltonian (tilde H), and how the difference $Delta H equiv tilde H - H $ may be
We find a new d-parameter family of ultra-local boundary Poisson brackets that satisfy the Jacobi identity. The two already known cases (hep-th/9305133, hep-th/9806249 and hep-th/9901112) of ultra-local boundary Poisson brackets are included in this new continuous family as special cases.
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri