ترغب بنشر مسار تعليمي؟ اضغط هنا

Reduction of the spin susceptibility in the superconducting state of Sr2RuO4 observed by polarized neutron scattering

179   0   0.0 ( 0 )
 نشر من قبل Stephen Hayden
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent observations [A.~Pustogow et al. Nature 574, 72 (2019)] of a drop of the $^{17}$O nuclear magnetic resonance (NMR) Knight shift in the superconducting state of Sr$_2$RuO$_4$ challenged the popular picture of a chiral odd-parity paired state in this compound. Here we use polarized neutron scattering to show that there is a $34 pm 6$ % drop in the magnetic susceptibility at the ruthenium site below the superconducting transition temperature. Measurements are made at lower fields $H sim tfrac{1}{3} H_{c2}$ than a previous study allowing the suppression to be observed. Our results are consistent with the recent NMR observations and rule out the chiral odd-parity $mathbf{d}=hat{mathbf{z}}(k_xpm ik_y)$ state. The observed susceptibility is consistent with several recent proposals including even-parity $B_{1g}$ and odd-parity helical states.



قيم البحث

اقرأ أيضاً

We report a study of the magnetization density in the mixed state of the unconventional superconductor S2RuO4. On entering the superconducting state we find no change in the magnitude or distribution of the induced moment for a magnetic field of 1 Te sla applied within the RuO2 planes. Our results are consistent with a spin-triplet Cooper pairing with spins lying in the basal plane. This is in contrast with similar experiments performed on conventional and high-Tc superconductors.
145 - T. Hattori , K. Karube , Y. Ihara 2013
In order to determine the superconducting paring state in the ferromagnetic superconductor UCoGe, ^{59}Co NMR Knight shift, which is directly related to the microscopic spin susceptibility, was measured in the superconducting state under magnetic fie lds perpendicular to spontaneous magnetization axis: ^{59}K^{a, b}. ^{59}K^{a, b} shows to be constant, but does not decrease below a superconducting transition. These behaviors as well as the invariance of the internal field at the Co site in the superconducting state exclude the spin-singlet pairing, and can be interpreted with the equal-spin pairing state with a large exchange field along the c axis, which was studied by Mineev [Phys. Rev. B 81, 180504 (2010)].
The heavy fermion superconductor UPt$_3$ is thought to have odd-parity, a state for which the temperature dependence of the spin susceptibility is an important signature. In order to address conflicting reports from two different experiments, the NMR Knight shift and measurements of the anisotropy of the upper critical field, we have measured the bulk susceptibility in a high quality single crystal using polarized-neutron diffraction. A temperature independent susceptibility was observed for $H||a$ through the transitions between the normal state and the superconducting A-, B- and C-phases, consistent with odd-parity, spin-triplet superconductivity.
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0. 28 meV, which disappears at T$_c$ = 1.5 K. $Delta$ is close to the result expected from weak coupling BCS theory ($Delta_0$=1.76kBT$_c$ = 0.229 meV). Odd parity superconductivity is associated with a fully isotropic gap without nodes over a significant part of the Fermi surface.
We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation dependent specific heat to include conical field rotations consisting of in-plane azimuthal angle phi-sweeps at various polar angles theta performed down to 0.1 K. Clear 4-fold oscillations of the specific heat and a rapid suppression of it by changing theta are explained only by a compensation from two types of bands with anti-phase gap anisotropies with each other. The results indicate that the active band, responsible for the superconducting instability, is the gamma-band with the lines of gap minima along the [100] directions, and the passive band is the alpha- and beta-bands with the lines of gap minima or zeros along the [110] directions in their induced superconducting gaps. We also demonstrated the scaling of the specific heat for the field in the c-direction, which supports the line-node-like gap structures running along the kz direction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا