ﻻ يوجد ملخص باللغة العربية
We report on tunneling spectroscopy measurements using a Scanning Tunneling Microscope (STM) on the spin triplet superconductor Sr2RuO4. We find a negligible density of states close to the Fermi level and a fully opened gap with a value of $Delta$=0.28 meV, which disappears at T$_c$ = 1.5 K. $Delta$ is close to the result expected from weak coupling BCS theory ($Delta_0$=1.76kBT$_c$ = 0.229 meV). Odd parity superconductivity is associated with a fully isotropic gap without nodes over a significant part of the Fermi surface.
We have obtained strong experimental evidence for the full determination of the superconducting gap structure in all three bands of the spin-triplet superconductor Sr2RuO4 for the first time. We have extended the measurements of the field-orientation
This review presents a summary and evaluations of the superconducting properties of the layered ruthenate Sr2RuO4 as they are known in the autumn of 2011. This paper appends the main progress that has been made since the preceding review by Mackenzie
We report the field-orientation dependent specific heat of the spin-triplet superconductor Sr2RuO4 under the magnetic field aligned parallel to the RuO2 planes with high accuracy. Below about 0.3 K, striking 4-fold oscillations of the density of stat
High resolution angle-resolved photoemission measurements have been carried out to study the electronic structure and superconducting gap of the (Tl$_{0.58}$Rb$_{0.42}$)Fe$_{1.72}$Se$_2$ superconductor with a T$_c$=32 K. The Fermi surface topology co
Recent nuclear magnetic resonance studies [A. Pustogow {it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr$_2$RuO$_4$. To provide guidance from microscopic theory as to which other pair states