ﻻ يوجد ملخص باللغة العربية
We define and study the existence of very stable Higgs bundles on Riemann surfaces, how it implies a precise formula for the multiplicity of the very stable components of the global nilpotent cone and its relationship to mirror symmetry. The main ingredients are the Bialynicki-Birula theory of ${mathbb C}^*$-actions on semiprojective varieties, ${mathbb C}^*$ characters of indices of ${mathbb C}^*$-equivariant coherent sheaves, Hecke transformation for Higgs bundles, relative Fourier-Mukai transform along the Hitchin fibration, hyperholomorphic structures on universal bundles and cominuscule Higgs bundles.
For (X,L) a polarized toric variety and G a torus of automorphisms of (X,L), denote by Y the GIT quotient X/G. We define a family of fully faithful functors from the category of torus equivariant reflexive sheaves on Y to the category of torus equiva
These are the lecture notes from my course in the January 2011 School on Moduli Spaces at the Newton Institute. I give an introduction to Higgs bundles and their application to the study of character varieties for surface group representations.
This is a review article on some applications of generalised parabolic structures to the study of torsion free sheaves and $L$-twisted Hitchin pairs on nodal curves. In particular, we survey on the relation between representations of the fundamental
We find an agreement of equivariant indices of semi-classical homomorphisms between pairwise mirror branes in the GL(2) Higgs moduli space on a Riemann surface. On one side we have the components of the Lagrangian brane of U(1,1) Higgs bundles whose
Some connected components of a moduli space are mundane in the sense that they are distinguished only by obvious topological invariants or have no special characteristics. Others are more alluring and unusual either because they are not detected by p