ترغب بنشر مسار تعليمي؟ اضغط هنا

LoCuSS: exploring the connection between local environment, star formation and dust mass in Abell 1758

72   0   0.0 ( 0 )
 نشر من قبل Matteo Bianconi Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-forming galaxies. We have selected cluster Abell 1758 from the Local Cluster Substructure Survey (LoCuSS). Its complex dynamical state is an ideal test-bench to track dust removal and destruction in galaxies due to merger and accretion shocks. We present a systematic panchromatic study (from 0.15 $rm mu$m with GALEX to 500 $rm mu$m with Herschel) of spectroscopically confirmed star-forming cluster galaxies at intermediate redshift. We observe that the main subclusters (A1758N and A1758S) belong to two separate large-scale structures, with no overlapping galaxy members. Star-forming cluster members are distributed preferentially outside cluster central regions, and are not grouped in substructures. Rather, these galaxies are being funneled towards the main subclusters along separate accretion filaments. Additionally, we present the first study of dust-to-stellar (DTS) mass ratio used as indicator for local environmental influence on galaxy evolution. Star-forming cluster members show lower mean values (32% at 2.4$rm sigma$) of DTS mass ratio and lower levels of infrared emission from birth clouds with respect to coeval star-forming field galaxies. This picture is consistent with the majority of star-forming cluster members infalling in isolation. Upon accretion, star-formation is observed to decrease and warm dust is destroyed due to heating from the intracluster medium radiation, ram-pressure stripping and merger shocks.



قيم البحث

اقرأ أيضاً

We present a study of the active galactic nucleus (AGN) activity in the local Universe (z < 0.33) and its correlation with the host galaxy properties, derived from a Sloan Digital Sky Survey (SDSS DR8) sample with spectroscopic star-formation rate (S FR) and stellar mass ($mathcal{M}_{ast}$) determination. To quantify the level of AGN activity we used X-ray information from the XMM-Newton Serendipitous Source Catalogue (3XMM DR8). Applying multiwavelength AGN selection criteria (optical BPT-diagrams, X-ray/optical ratio etc) we found that 24% of the detected sources are efficiently-accreting AGN with moderate-to-high X-ray luminosity, which are twice as likely to be hosted by star-forming galaxies than by quiescent ones. The distribution of the specific Black Hole accretion rate (sBHAR, $lambda_{mathrm{sBHAR}}$) shows that nuclear activity in local, non-AGN dominated galaxies peaks at very low accretion rates ($-4 lesssim loglambda_{mathrm{sBHAR}} lesssim -3$) in all stellar mass ranges. However, we observe systematically larger values of sBHAR for galaxies with active star-formation than for quiescent ones, as well as an increase of the mean $lambda_{mathrm{sBHAR}}$ with SFR for both star-forming and quiescent galaxies. These findings confirm the decreased level of AGN activity with cosmic time and are consistent with a scenario where both star-formation and AGN activity are fuelled by a common gas reservoir.
Recent observations from integral field spectroscopy (IFS) indicate that the fraction of galaxies that are slow rotators, $F_{rm SR}$, depends primarily on stellar mass, with no significant dependence on environment. We investigate these trends and t he formation paths of slow rotators (SRs) using the EAGLE and Hydrangea hydro-dynamical simulations. EAGLE consists of several cosmological boxes of volumes up to $(100,rm Mpc)^3$, while Hydrangea consists of $24$ cosmological simulations of galaxy clusters and their environment. Together they provide a statistically significant sample in the stellar mass range $10^{9.5},rm M_{odot}-10^{12.3},rm M_{odot}$, of $16,358$ galaxies. We construct IFS-like cubes and measure stellar spin parameters, $lambda_{rm R}$, and ellipticities, allowing us to classify galaxies into slow/fast rotators as in observations. The simulations display a primary dependence of $F_{rm SR}$ on stellar mass, with a weak dependence on environment. At fixed stellar mass, satellite galaxies are more likely to be SRs than centrals. $F_{rm SR}$ shows a dependence on halo mass at fixed stellar mass for central galaxies, while no such trend is seen for satellites. We find that $approx 70$% of SRs at $z=0$ have experienced at least one merger with mass ratio $ge 0.1$, with dry mergers being at least twice more common than wet mergers. Individual dry mergers tend to decrease $lambda_{rm R}$, while wet mergers mostly increase it. However, $30$% of SRs at $z=0$ have not experienced mergers, and those inhabit halos with median spins twice smaller than the halos hosting the rest of the SRs. Thus, although the formation paths of SRs can be varied, dry mergers and/or halos with small spins dominate.
Using a suite of isolated $L_star$ galaxy simulations, we show that global depletion times and star-forming gas mass fractions in simulated galaxies exhibit systematic and well-defined trends as a function of the local star formation efficiency per f reefall time, $epsilon_{rm ff}$, strength of stellar feedback, and star formation threshold. We demonstrate that these trends can be reproduced and explained by a simple physical model of global star formation in galaxies. Our model is based on mass conservation and the idea of gas cycling between star-forming and non-star-forming states on certain characteristic time scales under the influence of dynamical and feedback processes. Both the simulation results and our model predictions exhibit two limiting regimes with rather different dependencies of global galactic properties on the local parameters. When $epsilon_{rm ff}$ is small and feedback is inefficient, the total star-forming mass fraction, $f_{rm sf}$, is independent of $epsilon_{rm ff}$ and the global depletion time, $tau_{rm dep}$, scales inversely with $epsilon_{rm ff}$. When $epsilon_{rm ff}$ is large or feedback is very efficient, these trends are reversed: $f_{rm sf} propto epsilon_{rm ff}^{-1}$ and $tau_{rm dep}$ is independent of $epsilon_{rm ff}$ but scales linearly with the feedback strength. We also compare our results with the observed depletion times and mass fractions of star-forming and molecular gas and show that they provide complementary constraints on $epsilon_{rm ff}$ and the feedback strength. We show that useful constraints on $epsilon_{rm ff}$ can also be obtained using measurements of the depletion time and its scatter on different spatial scales.
We investigate the timescale with which the IR luminosity decreases after a complete and rapid quenching of star formation using observations of local and high-redshift galaxies. From SED modelling, we derive the time since quenching of a subsample o f 14 galaxies from the Herschel Reference Survey suffering from ram-pressure stripping due to the environment of the Virgo cluster and of a subsample of 7 rapidly quenched COSMOS galaxies selected through a state-of-the-art statistical method already tested on the determination of galaxies star formation history. Three out of the 7 COSMOS galaxies have an optical spectra with no emission line, confirming their quenched nature. Present physical properties of the two samples are obtained as well as the past L$_{IR}$ of these galaxies, just before their quenching, from the long-term SFH properties. This past L$_{IR}$ is shown to be consistent with the L$_{IR}$ of reference samples of normally star-forming galaxies with same $M_*$ and $z$ than each of our quenched galaxies. We put constraints on the present to past L$_{IR}$ ratio as a function of quenching time. The two samples probe different dynamical ranges in terms of quenching age with the HRS galaxies exhibiting longer timescales (0.2-3,Gyr) compared to the COSMOS one ($<100$,Myr). Assuming an exponential decrease of the L$_{IR}$ after quenching, the COSMOS quenched galaxies are consistent with short e-folding times less than a couple of hundreds of Myr while the properties of the HRS quenched galaxies are compatible with timescales of several hundreds of Myr. For the HRS sample, this result is consistent with ram pressure stripping due to the environment. For the COSMOS sample, different quenching processes are acting on short to intermediate timescales. Processes such as galaxy mergers, disk instabilities or environmental effects can produce such strong star formation variability.
We present Herschel/PACS, MMT/Hectospec and XMM-Newton observations of Abell 1835, one of the brightest X-ray clusters on the sky, and the host of a strong cool core. Even though Abell 1835 has a prototypically relaxed X-ray morphology and no signs o f ongoing merger activity in strong- and weak-lensing mass maps, it has a complex velocity distribution, suggesting that it is still accreting significant amounts of mass in the form of smaller satellite systems. Indeed, we find strong dynamical segregation of star-forming dusty galaxies from the optically selected cluster population. Most Herschel sources are found close to the virial radius of the cluster, and almost a third appear to be embedded within a filament feeding the cluster from the SW. We find that the most luminous infrared galaxies are likely involved in galaxy-galaxy interactions that may have triggered the current phase of star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا