ﻻ يوجد ملخص باللغة العربية
Using a suite of isolated $L_star$ galaxy simulations, we show that global depletion times and star-forming gas mass fractions in simulated galaxies exhibit systematic and well-defined trends as a function of the local star formation efficiency per freefall time, $epsilon_{rm ff}$, strength of stellar feedback, and star formation threshold. We demonstrate that these trends can be reproduced and explained by a simple physical model of global star formation in galaxies. Our model is based on mass conservation and the idea of gas cycling between star-forming and non-star-forming states on certain characteristic time scales under the influence of dynamical and feedback processes. Both the simulation results and our model predictions exhibit two limiting regimes with rather different dependencies of global galactic properties on the local parameters. When $epsilon_{rm ff}$ is small and feedback is inefficient, the total star-forming mass fraction, $f_{rm sf}$, is independent of $epsilon_{rm ff}$ and the global depletion time, $tau_{rm dep}$, scales inversely with $epsilon_{rm ff}$. When $epsilon_{rm ff}$ is large or feedback is very efficient, these trends are reversed: $f_{rm sf} propto epsilon_{rm ff}^{-1}$ and $tau_{rm dep}$ is independent of $epsilon_{rm ff}$ but scales linearly with the feedback strength. We also compare our results with the observed depletion times and mass fractions of star-forming and molecular gas and show that they provide complementary constraints on $epsilon_{rm ff}$ and the feedback strength. We show that useful constraints on $epsilon_{rm ff}$ can also be obtained using measurements of the depletion time and its scatter on different spatial scales.
We study the implementation of mechanical feedback from supernovae (SNe) and stellar mass loss in galaxy simulations, within the Feedback In Realistic Environments (FIRE) project. We present the FIRE-2 algorithm for coupling mechanical feedback, whic
We present a study of the active galactic nucleus (AGN) activity in the local Universe (z < 0.33) and its correlation with the host galaxy properties, derived from a Sloan Digital Sky Survey (SDSS DR8) sample with spectroscopic star-formation rate (S
We explore the connection between dust and star formation, in the context of environmental effects on galaxy evolution. In particular, we exploit the susceptibility of dust to external processes to assess the influence of dense environment on star-fo
We present a sample of 33 galaxies for which we have calculated (i) the average rate of shear from publish rotation curves, (ii) the far-infrared luminosity from IRAS fluxes and (iii) The K-band luminosity from 2MASS. We show that a correlation exist
This paper systematically investigates comoving Mpc scale intergalactic medium (IGM) environment around galaxies traced by the Ly$alpha$ forest. Using our cosmological hydrodynamic simulations, we investigate the IGM-galaxy connection at $z=2$ by two